login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A298853 Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x - 1. 2
1, 7, 1, 0, 6, 4, 4, 0, 9, 5, 0, 4, 5, 0, 3, 2, 9, 3, 5, 9, 9, 0, 6, 3, 4, 1, 6, 3, 3, 3, 5, 8, 5, 9, 4, 5, 6, 3, 3, 1, 5, 6, 0, 9, 8, 5, 5, 9, 2, 4, 8, 5, 4, 4, 7, 8, 6, 1, 1, 6, 8, 7, 5, 8, 2, 3, 6, 1, 7, 0, 0, 6, 8, 0, 7, 8, 9, 0, 4, 9, 9, 7, 5, 3, 8, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Let (d(n)) = (2,1,2,1,2,1,...), s(n) = (s(n-1) + d(n))^(1/2) for n > 0, and s(0) = 1.
Then s(2n) -> 1.9263032199..., as in A298852;
s(2n+1) -> 1.710644095..., as in A298853.
LINKS
Simon Baker, On small bases which admit countably many expansions, Journal of Number Theory, Volume 147, February 2015, Pages 515-532.
Nikita Sidorov, Expansions in non-integer bases: Lower, middle and top orders, Journal of Number Theory, Volume 129, Issue 4, April 2009, Pages 741-754. See Proposition 2.4 p. 744.
Yuru Zou, Derong Kong, On a problem of countable expansions, Journal of Number Theory, Volume 158, January 2016, Pages 134-150. See Theorem 1.1 p. 135.
EXAMPLE
Greatest real zero = 1.710644095...
MATHEMATICA
r = x /. NSolve[x^4 - 2 x^2 - x - 1 == 0, x, 10000][[4]];
RealDigits[r][[1]]; (* A298853 *)
RealDigits[Root[ x^4-2*x^2-x-1, 2], 10, 120][[1]] (* Harvey P. Dale, May 23 2019 *)
PROG
(PARI) solve(x=1, 2, x^4-2*x^2-x-1) \\ Michel Marcus, Apr 14 2020
(PARI) polrootsreal(x^4 - 2*x^2 - x - 1)[2] \\ Charles R Greathouse IV, May 15 2020
CROSSREFS
Cf. A298852.
Sequence in context: A179376 A152447 A198611 * A351213 A198212 A217245
KEYWORD
cons,nonn,easy
AUTHOR
Clark Kimberling, Feb 13 2018
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 20:35 EDT 2024. Contains 375854 sequences. (Running on oeis4.)