|
|
A298853
|
|
Decimal expansion of the greatest real zero of x^4 - 2*x^2 - x - 1.
|
|
2
|
|
|
1, 7, 1, 0, 6, 4, 4, 0, 9, 5, 0, 4, 5, 0, 3, 2, 9, 3, 5, 9, 9, 0, 6, 3, 4, 1, 6, 3, 3, 3, 5, 8, 5, 9, 4, 5, 6, 3, 3, 1, 5, 6, 0, 9, 8, 5, 5, 9, 2, 4, 8, 5, 4, 4, 7, 8, 6, 1, 1, 6, 8, 7, 5, 8, 2, 3, 6, 1, 7, 0, 0, 6, 8, 0, 7, 8, 9, 0, 4, 9, 9, 7, 5, 3, 8, 2
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Let (d(n)) = (2,1,2,1,2,1,...), s(n) = (s(n-1) + d(n))^(1/2) for n > 0, and s(0) = 1.
Then s(2n) -> 1.9263032199..., as in A298852;
s(2n+1) -> 1.710644095..., as in A298853.
|
|
LINKS
|
|
|
EXAMPLE
|
Greatest real zero = 1.710644095...
|
|
MATHEMATICA
|
r = x /. NSolve[x^4 - 2 x^2 - x - 1 == 0, x, 10000][[4]];
RealDigits[Root[ x^4-2*x^2-x-1, 2], 10, 120][[1]] (* Harvey P. Dale, May 23 2019 *)
|
|
PROG
|
(PARI) solve(x=1, 2, x^4-2*x^2-x-1) \\ Michel Marcus, Apr 14 2020
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|