login
A298283
Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
2
8, 85, 205, 649, 2151, 7006, 22768, 73751, 238775, 774481, 2512751, 8150845, 26436856, 85743702, 278106216, 902050023, 2925843269, 9490084506, 30781419275, 99840712815, 323837616855, 1050381763044, 3406960613177, 11050631235618
OFFSET
1,1
COMMENTS
Column 4 of A298287.
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -6*a(n-2) +6*a(n-3) -21*a(n-4) +24*a(n-5) -36*a(n-6) +16*a(n-7) -6*a(n-8) +112*a(n-9) +70*a(n-10) -83*a(n-11) -186*a(n-12) -135*a(n-13) +122*a(n-14) +164*a(n-15) +54*a(n-16) -82*a(n-17) -63*a(n-18) +18*a(n-19) +38*a(n-20) +17*a(n-21) -15*a(n-22) -6*a(n-23) -2*a(n-24) for n>27
EXAMPLE
Some solutions for n=7
..0..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..1. .0..1..0..0
..1..1..0..1. .0..1..0..1. .1..1..1..0. .1..0..1..0. .0..0..1..0
..0..1..0..1. .0..1..0..1. .0..1..0..1. .1..1..1..0. .1..1..1..0
..0..0..0..1. .0..1..0..1. .0..0..0..1. .1..0..1..0. .0..0..0..1
..0..1..0..1. .0..1..1..1. .0..1..0..1. .1..0..1..0. .1..1..1..0
..1..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..0
..1..0..0..1. .1..0..0..0. .1..0..1..0. .1..1..0..0. .1..1..1..0
CROSSREFS
Cf. A298287.
Sequence in context: A258338 A245197 A281340 * A299176 A093103 A288691
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 16 2018
STATUS
approved