login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A258338
Ternary ménage problem: number of seating arrangements for n opposite-sex couples around a circular table such that no spouses and no triples of the same sex seat next to each other. Seats are labeled.
4
0, 8, 84, 3456, 219120, 19281600, 2324085120, 370554347520, 74897768655360, 18761274367718400, 5708008284647961600, 2072453585852572876800, 885341762559654194995200, 439630143301970662603161600, 251099117378080818090596352000, 163464570058143774978660630528000
OFFSET
1,2
COMMENTS
Conjecture: (a(n)/n!^2)^(1/n) ~ (3+sqrt(5))/2. - Vaclav Kotesovec, May 29 2015
LINKS
M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:10.1007/978-3-319-44543-4_12; arXiv:1510.07926 [math.CO], 2015-2016.
FORMULA
a(n) = A114939(n) * 4 * n.
MATHEMATICA
a[1] = 0;
a[n_] := n! Sum[(-1)^j (n-j)! SeriesCoefficient[ SeriesCoefficient[ Tr[ MatrixPower[{{0, 1, 0, y^2, 0, 0}, {z y^2, 0, 1, 0, y^2, 0}, {z y^2, 0, 0, 0, y^2, 0}, {0, 1, 0, 0, 0, z}, {0, 1, 0, y^2, 0, z}, {0, 0, 1, 0, y^2, 0}}, 2n]], {y, 0, 2n}], {z, 0, j}], {j, 0, n}];
Array[a, 16] (* Jean-François Alcover, Dec 03 2018, from 1st PARI program *)
PROG
(PARI) { a(n) = if(n<2, 0, n! * sum(j=0, n, (-1)^j * (n-j)! *polcoeff( polcoeff( trace([0, 1, 0, y^2, 0, 0; z*y^2, 0, 1, 0, y^2, 0; z*y^2, 0, 0, 0, y^2, 0; 0, 1, 0, 0, 0, z; 0, 1, 0, y^2, 0, z; 0, 0, 1, 0, y^2, 0]^(2*n)), 2*n, y) , j, z)) ); }
(PARI) { a(n) = if(n<2, 0, n! * polcoeff( serlaplace( polcoeff( trace([-y, z*y, z, 0, z*y, -y; -y, (z - 1)*y, 0, (z - 1)*y^2, z*y, -y; 0, (z - 1)*y, 0, (z - 1)*y^2, 0, -y; -y, 0, z - 1, 0, (z - 1)*y, 0; -y, z*y, z - 1, 0, (z - 1)*y, -y; -y, z*y, 0, z*y^2, z*y, -y]^n), n, y) )/(1-z) + O(z^(n+1)), n, z) ) }
CROSSREFS
Cf. A114939 (counts up to rotations and reflections)
Sequence in context: A350264 A113376 A205311 * A245197 A281340 A298283
KEYWORD
nonn
AUTHOR
Max Alekseyev, May 27 2015
STATUS
approved