The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A114939 Number of essentially different seating arrangements for n couples around a circular table with 2n seats avoiding spouses being neighbors and avoiding clusters of 3 persons with equal gender. 5
 0, 1, 7, 216, 10956, 803400, 83003040, 11579823360, 2080493573760, 469031859192960, 129727461014726400, 43176116371928601600, 17025803126147196057600, 7850538273249476117913600 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Arrangements that differ only by rotation or reflection are excluded by the following conditions: Seat number 1 is assigned to person (a). Person (a)'s spouse (A) can only take seats with numbers <=(n+1). If (A) gets seat n+1 (i.e. sits exactly opposite to her/his spouse) then person (B) can only take seats with numbers <= n. LINKS M. A. Alekseyev, Weighted de Bruijn Graphs for the Menage Problem and Its Generalizations. Lecture Notes in Computer Science 9843 (2016), 151-162. doi:10.1007/978-3-319-44543-4_12; arXiv:1510.07926 [math.CO], 2015-2016. FORMULA See Alekseyev (2016) and the PARI code for the formula. a(n) = A258338(n) / (4*n). EXAMPLE a(2)=1 because the only valid arrangement is aBAb. a(3)=7 because the only valid arrangements under the given conditions are: abAcBC, aBAcbC, aBcAbC, aBcACb, acAbCB, acBAbC, aCAbcB. MATHEMATICA a[1] = 0; a[n_] := (n-1)!/4 Sum[(-1)^j(n-j)! SeriesCoefficient[ SeriesCoefficient[Tr[ MatrixPower[{{0, 1, 0, y^2, 0, 0}, {z y^2, 0, 1, 0, y^2, 0}, {z y^2, 0, 0, 0, y^2, 0}, {0, 1, 0, 0, 0, z}, {0, 1, 0, y^2, 0, z}, {0, 0, 1, 0, y^2, 0}}, 2n]], {y, 0, 2n}] , {z, 0, j}], {j, 0, n}]; Array[a, 14] (* Jean-François Alcover, Dec 03 2018, from PARI *) PROG (PARI) { a(n) = if(n<=1, 0, (-1)^n*(n-1)!*2^(n-1) + n! * polcoeff( polcoeff( [0, 2*y*z^3 + z^2, -3*y*z^5 - 4*z^4 + ((-2*y^2 - 1)/y)*z^3, 6*y*z^7 + (4*y^2 + 11)*z^6 + ((8*y^2 + 4)/y)*z^5 + 3*z^4] * sum(j=0, n-1, j! * [0, 0, 0, -z^6 + z^4; 1, 0, 0, ((y^2 + 1)/y)*z^5 - 2*z^4 + ((-y^2 - 1)/y)*z^3; 0, 1, 0, ((2*y^2 + 2)/y)*z^3 + z^2; 0, 0, 1, -2*z^2]^(n+j) ) * [1, 0, 0, 0]~, 2*n, z), 0, y) / 2 ); } CROSSREFS Cf. A114938, A137729, A137730, A137737, A137749, A258338. Sequence in context: A193836 A193877 A193186 * A193224 A319538 A290974 Adjacent sequences: A114936 A114937 A114938 * A114940 A114941 A114942 KEYWORD nonn,nice AUTHOR Hugo Pfoertner, Jan 08 2006 EXTENSIONS a(4)-a(7) corrected, formula and further term provided by Max Alekseyev, Feb 15 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 05:41 EST 2022. Contains 358649 sequences. (Running on oeis4.)