%I #4 Jan 16 2018 08:22:29
%S 8,85,205,649,2151,7006,22768,73751,238775,774481,2512751,8150845,
%T 26436856,85743702,278106216,902050023,2925843269,9490084506,
%U 30781419275,99840712815,323837616855,1050381763044,3406960613177,11050631235618
%N Number of nX4 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
%C Column 4 of A298287.
%H R. H. Hardin, <a href="/A298283/b298283.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 5*a(n-1) -6*a(n-2) +6*a(n-3) -21*a(n-4) +24*a(n-5) -36*a(n-6) +16*a(n-7) -6*a(n-8) +112*a(n-9) +70*a(n-10) -83*a(n-11) -186*a(n-12) -135*a(n-13) +122*a(n-14) +164*a(n-15) +54*a(n-16) -82*a(n-17) -63*a(n-18) +18*a(n-19) +38*a(n-20) +17*a(n-21) -15*a(n-22) -6*a(n-23) -2*a(n-24) for n>27
%e Some solutions for n=7
%e ..0..0..1..0. .0..1..1..0. .0..0..0..0. .0..0..0..1. .0..1..0..0
%e ..1..1..0..1. .0..1..0..1. .1..1..1..0. .1..0..1..0. .0..0..1..0
%e ..0..1..0..1. .0..1..0..1. .0..1..0..1. .1..1..1..0. .1..1..1..0
%e ..0..0..0..1. .0..1..0..1. .0..0..0..1. .1..0..1..0. .0..0..0..1
%e ..0..1..0..1. .0..1..1..1. .0..1..0..1. .1..0..1..0. .1..1..1..0
%e ..1..1..0..1. .0..1..0..1. .0..1..0..1. .1..0..1..0. .0..1..0..0
%e ..1..0..0..1. .1..0..0..0. .1..0..1..0. .1..1..0..0. .1..1..1..0
%Y Cf. A298287.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 16 2018