login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298282
Number of n X 3 0..1 arrays with every element equal to 0, 1, 2, 3 or 6 king-move adjacent elements, with upper left element zero.
4
4, 25, 70, 205, 614, 1860, 5631, 17034, 51507, 155755, 471038, 1424553, 4308225, 13029159, 39403450, 119165999, 360388207, 1089905354, 3296150132, 9968393611, 30146949453, 91172018210, 275727297765, 833869252932, 2521832029371
OFFSET
1,1
COMMENTS
Column 3 of A298287.
LINKS
FORMULA
Empirical: a(n) = 3*a(n-1) - a(n-2) + 2*a(n-3) + 4*a(n-4) - a(n-5) + 2*a(n-6) - 2*a(n-7) - 3*a(n-8) - 2*a(n-9) - 2*a(n-10) - 2*a(n-11) for n>12.
Empirical g.f.: x*(4 + 13*x - x^2 + 12*x^3 + 3*x^4 - 13*x^5 - 8*x^6 - 19*x^7 - 13*x^8 - 7*x^9 - 2*x^10 - 4*x^11) / (1 - 3*x + x^2 - 2*x^3 - 4*x^4 + x^5 - 2*x^6 + 2*x^7 + 3*x^8 + 2*x^9 + 2*x^10 + 2*x^11). - Colin Barker, Feb 26 2018
EXAMPLE
Some solutions for n=7:
..0..1..1. .0..1..1. .0..1..1. .0..0..0. .0..1..0. .0..1..0. .0..1..1
..1..0..1. .1..0..0. .1..0..1. .1..1..1. .1..0..1. .0..0..0. .1..0..0
..1..0..1. .1..1..0. .1..0..1. .0..0..0. .1..0..1. .0..1..0. .1..0..1
..1..0..0. .0..1..0. .1..0..1. .0..1..1. .1..1..1. .0..1..0. .1..1..1
..0..1..1. .0..0..0. .1..0..1. .1..0..1. .1..0..1. .1..0..1. .1..0..1
..0..1..0. .0..1..0. .1..0..1. .1..1..0. .0..1..0. .1..1..0. .0..0..1
..0..1..0. .0..1..0. .1..0..0. .0..0..0. .1..0..0. .0..0..0. .1..1..0
CROSSREFS
Cf. A298287.
Sequence in context: A302324 A303017 A281339 * A077205 A180569 A302821
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 16 2018
STATUS
approved