login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A297771
Number of distinct runs in base-3 digits of n.
3
1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 1, 2, 2, 3, 2, 3, 3, 3, 3, 3, 2, 3, 3, 2, 1, 2, 3, 3, 2, 3, 3, 3, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 3, 2, 3, 3, 3, 2, 3, 2, 2, 1, 2, 2, 3, 3, 3, 3, 4, 3, 3, 3, 2
OFFSET
1,3
COMMENTS
Every positive integers occurs infinitely many times. See A297770 for a guide to related sequences.
LINKS
FORMULA
a(n) << log n. In particular, a(n) <= log(n)/log(3) + 1. - Charles R Greathouse IV, Jul 13 2024
EXAMPLE
1040 in base-3: 1,1,0,2,1,1,2; five runs, of which 3 are distinct, so that a(1040) = 3.
MATHEMATICA
b = 3; s[n_] := Length[Union[Split[IntegerDigits[n, b]]]]
Table[s[n], {n, 1, 200}]
PROG
(Python)
from itertools import groupby
from sympy.ntheory import digits
def A297771(n): return len(set(map(lambda x:tuple(x[1]), groupby(digits(n, 3)[1:])))) # Chai Wah Wu, Jul 13 2024
(PARI) apply( {A297771(n)=my(r=Vec(0, 3), c); while(n, my(d=n%3, L=valuation(n+if(d>1, 1, d, n+1), 3)); !bittest(r[1+d], L) && c++ && r[1+d] += 1<<L; n\=3^L); c}, [0..99]) \\ M. F. Hasler, Jul 13 2024
CROSSREFS
Cf. A043555 (number of runs, not necessarily distinct), A297770 (this for base 2).
Sequence in context: A197775 A002321 A043530 * A164995 A294108 A055718
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 26 2018
STATUS
approved