login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A297381
Numerator of -A023900(n)/2.
3
-1, 1, 1, 1, 2, -1, 3, 1, 1, -2, 5, -1, 6, -3, -4, 1, 8, -1, 9, -2, -6, -5, 11, -1, 2, -6, 1, -3, 14, 4, 15, 1, -10, -8, -12, -1, 18, -9, -12, -2, 20, 6, 21, -5, -4, -11, 23, -1, 3, -2, -16, -6, 26, -1, -20, -3, -18, -14, 29, 4, 30, -15, -6, 1, -24, 10, 33, -8, -22, 12, 35, -1, 36, -18, -4, -9, -30, 12, 39, -2, 1, -20, 41, 6, -32, -21, -28, -5
OFFSET
1,5
LINKS
FORMULA
a(n) = numerator of -A023900(n)/2.
a(n) = numerator of lim_{s->0} zeta(s)*Sum_{d|n} A008683(d)/d^(s-1).
a(n) = numerator of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{k=1..m} A191898(n, k) for n > 1.
a(k) = numerators of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{n=1..m} A191898(n, k) for k > 1.
MATHEMATICA
Clear[n, s, nn]; nn = 64; Numerator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]
PROG
(PARI) a(n) = numerator(-sumdiv(n, d, d*moebius(d))/2) \\ Iain Fox, Dec 29 2017
(PARI) A297381(n) = numerator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ Antti Karttunen, Sep 30 2018
CROSSREFS
Cf. A023900, A297382 (denominators).
Sequence in context: A378912 A117811 A349431 * A051793 A065371 A300982
KEYWORD
sign,frac
AUTHOR
Mats Granvik, Dec 29 2017
EXTENSIONS
More terms from Antti Karttunen, Sep 30 2018
STATUS
approved