login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of -A023900(n)/2.
3

%I #20 Sep 30 2018 20:25:19

%S -1,1,1,1,2,-1,3,1,1,-2,5,-1,6,-3,-4,1,8,-1,9,-2,-6,-5,11,-1,2,-6,1,

%T -3,14,4,15,1,-10,-8,-12,-1,18,-9,-12,-2,20,6,21,-5,-4,-11,23,-1,3,-2,

%U -16,-6,26,-1,-20,-3,-18,-14,29,4,30,-15,-6,1,-24,10,33,-8,-22,12,35,-1,36,-18,-4,-9,-30,12,39,-2,1,-20,41,6,-32,-21,-28,-5

%N Numerator of -A023900(n)/2.

%H Antti Karttunen, <a href="/A297381/b297381.txt">Table of n, a(n) for n = 1..65537</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation">Cesàro summation</a>

%F a(n) = numerator of -A023900(n)/2.

%F a(n) = numerator of lim_{s->0} zeta(s)*Sum_{d|n} A008683(d)/d^(s-1).

%F a(n) = numerator of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{k=1..m} A191898(n, k) for n > 1.

%F a(k) = numerators of lim_{N->infinity} (1/N)*Sum_{m=1..N} Sum_{n=1..m} A191898(n, k) for k > 1.

%t Clear[n, s, nn]; nn = 64; Numerator[Table[Limit[Zeta[s]*Total[MoebiusMu[Divisors[n]]/Divisors[n]^(s - 1)], s -> 0], {n, 1, nn}]]

%o (PARI) a(n) = numerator(-sumdiv(n, d, d*moebius(d))/2) \\ _Iain Fox_, Dec 29 2017

%o (PARI) A297381(n) = numerator(-(1/2)*factorback(apply(p -> 1-p, factor(n)[, 1]))); \\ _Antti Karttunen_, Sep 30 2018

%Y Cf. A023900, A297382 (denominators).

%K sign,frac

%O 1,5

%A _Mats Granvik_, Dec 29 2017

%E More terms from _Antti Karttunen_, Sep 30 2018