login
A296760
Numbers whose base-16 digits d(m), d(m-1), ..., d(0) have #(rises) > #(falls); see Comments.
5
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 103, 104, 105, 106
OFFSET
1,1
COMMENTS
A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296759-A296761 partition the natural numbers. See the guide at A296712.
LINKS
EXAMPLE
The base-16 digits of 106 are 6,10; here #(rises) = 1 and #(falls) = 0, so 106 is in the sequence.
MATHEMATICA
z = 200; b = 16; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], -1] == Count[d[#], 1] &] (* A296759 *)
Select[Range [z], Count[d[#], -1] < Count[d[#], 1] &] (* A296760 *)
Select[Range [z], Count[d[#], -1] > Count[d[#], 1] &] (* A296761 *)
rgf16Q[n_]:=Total[Sign[#]&/@Differences[IntegerDigits[n, 16]]]>0; Select[Range[150], rgf16Q] (* Harvey P. Dale, Nov 26 2023 *)
CROSSREFS
KEYWORD
nonn,base,easy
AUTHOR
Clark Kimberling, Jan 08 2018
STATUS
approved