

A296757


Numbers whose base15 digits d(m), d(m1), ..., d(0) have #(rises) > #(falls); see Comments.


5



17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 81, 82, 83, 84, 85, 86, 87, 88, 89, 97, 98, 99, 100, 101, 102, 103, 104
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

A rise is an index i such that d(i) < d(i+1); a fall is an index i such that d(i) > d(i+1). The sequences A296756A296758 partition the natural numbers. See the guide at A296712.


LINKS



EXAMPLE

The base15 digits of 2^20 + 6 are 1, 5, 10, 10, 5, 7; here #(rises) = 3 and #(falls) = 1, so 2^20 + 6 is in the sequence.


MATHEMATICA

z = 200; b = 15; d[n_] := Sign[Differences[IntegerDigits[n, b]]];
Select[Range [z], Count[d[#], 1] == Count[d[#], 1] &] (* A296756 *)
Select[Range [z], Count[d[#], 1] < Count[d[#], 1] &] (* A296757 *)
Select[Range [z], Count[d[#], 1] > Count[d[#], 1] &] (* A296758 *)


CROSSREFS



KEYWORD

nonn,base,easy


AUTHOR



STATUS

approved



