

A296580


Odd primes p such that tau(p) is congruent to (p1)/2 (mod p), where tau is the Ramanujan tau function (A000594).


0




OFFSET

1,1


COMMENTS

a(4) > 10^7.
There is no odd prime p (< 10^7) such that tau(p) is congruent to (p+1)/2 (mod p).


LINKS

Table of n, a(n) for n=1..3.
Eric Weisstein's World of Mathematics, Tau Function.
Wikipedia, Ramanujan tau function


EXAMPLE

tau(191) = 2762403350592 and 2762403350592 == 95 mod 191, so a(1) = 191.
tau(5399) = 616400667743946780600 and 616400667743946780600 == 2699 mod 5399, so a(2) = 5399.
tau(1259393) = 600367974333827988240021654527358 and 600367974333827988240021654527358 == 629696 mod 1259393, so a(3) = 1259393.


CROSSREFS

Cf. A000594, A007659, A076847 (tau(p)), A193855, A273650, A273651, A295645.
Sequence in context: A177683 A209549 A218595 * A206860 A206954 A207986
Adjacent sequences: A296577 A296578 A296579 * A296581 A296582 A296583


KEYWORD

nonn,more


AUTHOR

Seiichi Manyama, Dec 16 2017


STATUS

approved



