OFFSET
1,6
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (n = 1..1000 from Seiichi Manyama)
FORMULA
for n > 1, a(n) = -1680*Sum_{i=1..(p-1)/2} i**4*sigma(i)*sigma(p-i) mod p where p = prime(n). - Chai Wah Wu, Nov 08 2022
MATHEMATICA
Mod[RamanujanTau@ #, #] & /@ Prime@ Range@ 80 (* Michael De Vlieger, May 27 2016 *)
PROG
(Ruby)
require 'prime'
def mul(f_ary, b_ary, m)
s1, s2 = f_ary.size, b_ary.size
ary = Array.new(s1 + s2 - 1, 0)
s10 = [s1 - 1, m].min
(0..s10).each{|i|
s20 = [s2 - 1, m - i].min
(0..s20).each{|j|
ary[i + j] += f_ary[i] * b_ary[j]
}
}
ary
end
def power(ary, n, m)
return [1] if n == 0
k = power(ary, n >> 1, m)
k = mul(k, k, m)
return k if n & 1 == 0
return mul(k, ary, m)
end
def A000594(n)
ary = Array.new(n + 1, 0)
i = 0
j, k = 2 * i + 1, i * (i + 1) / 2
while k <= n
i & 1 == 1? ary[k] = -j : ary[k] = j
i += 1
j, k = 2 * i + 1, i * (i + 1) / 2
end
power(ary, 8, n).unshift(0)[1..n]
end
def A273651(n)
p_ary = Prime.each.take(n)
t_ary = A000594(p_ary[-1])
p_ary.inject([]){|s, i| s << t_ary[i - 1] % i}
end
p A273651(n)
(PARI) a(n, p=prime(n))=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756%p \\ Charles R Greathouse IV, Jun 07 2016
(Python)
from sympy import prime, divisor_sigma
def A273651(n):
p = prime(n)
return -1680*sum(pow(i, 4, p)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1, p+1>>1)) % p # Chai Wah Wu, Nov 08 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, May 27 2016
STATUS
approved