login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296578
T(n,k)=Number of nXk 0..1 arrays with each 1 horizontally, vertically or antidiagonally adjacent to 0, 1 or 3 neighboring 1s.
8
2, 4, 4, 7, 11, 7, 13, 31, 31, 13, 24, 90, 135, 90, 24, 44, 254, 616, 616, 254, 44, 81, 728, 2782, 4543, 2782, 728, 81, 149, 2078, 12544, 32439, 32439, 12544, 2078, 149, 274, 5931, 56646, 233636, 368720, 233636, 56646, 5931, 274, 504, 16941, 255699, 1680927
OFFSET
1,1
COMMENTS
Table starts
...2.....4.......7.......13.........24...........44.............81
...4....11......31.......90........254..........728...........2078
...7....31.....135......616.......2782........12544..........56646
..13....90.....616.....4543......32439.......233636........1680927
..24...254....2782....32439.....368720......4215593.......48217515
..44...728...12544...233636....4215593.....76657600.....1394258872
..81..2078...56646..1680927...48217515...1394258872....40337678992
.149..5931..255699.12090311..551193737..25339030733..1165868818808
.274.16941.1154239.86993766.6302520826.460672241848.33712843195488
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-3)
k=2: a(n) = a(n-1) +4*a(n-2) +3*a(n-3) +a(n-4) +4*a(n-5) -a(n-6) -6*a(n-7) -a(n-8) +a(n-9)
k=3: [order 14]
k=4: [order 50]
EXAMPLE
Some solutions for n=5 k=4
..0..0..1..0. .0..0..0..1. .1..0..0..0. .0..1..0..0. .0..0..1..0
..1..0..0..0. .0..0..1..0. .1..0..0..0. .1..0..0..0. .1..1..0..0
..0..1..0..1. .1..0..0..1. .0..1..0..0. .0..0..0..0. .0..1..0..0
..0..0..0..0. .0..1..0..0. .0..1..0..1. .1..0..0..1. .0..0..1..0
..0..0..1..1. .0..0..1..0. .0..0..0..1. .1..0..0..0. .1..0..1..0
CROSSREFS
Column 1 is A000073(n+3).
Sequence in context: A282647 A269089 A282862 * A268750 A282996 A295275
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 15 2017
STATUS
approved