login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296186
Triangle read by rows, T(n,m) = (1/n)*Sum_{i=1..n} C(n,i-1)*C(n,i)*C(n,m+1-i), T(0,0)=0, m<2n.
0
0, 1, 1, 1, 3, 3, 1, 1, 6, 13, 13, 6, 1, 1, 10, 36, 65, 65, 36, 10, 1, 1, 15, 80, 220, 356, 356, 220, 80, 15, 1, 1, 21, 155, 595, 1380, 2072, 2072, 1380, 595, 155, 21, 1, 1, 28, 273, 1386, 4305, 8862, 12601, 12601, 8862, 4305, 1386, 273, 28, 1, 1, 36, 448, 2898, 11536, 30828, 58072, 79221, 79221, 58072, 30828, 11536
OFFSET
0,5
FORMULA
G.f.: (-sqrt((1-x*(y+1)^2)^2-4*x^2*y*(y+1)^2)-x*(y+1)^2+1)/(2*x*(y+1)*y).
EXAMPLE
Triangle begins
0;
1, 1;
1, 3, 3, 1;
1, 6, 13, 13, 6, 1;
1, 10, 36, 65, 65, 36, 10, 1;
1, 15, 80, 220, 356, 356, 220, 80, 15, 1;
MAPLE
gf := (-sqrt((1-x*(y+1)^2)^2-4*x^2*y*(y+1)^2)-x*(y+1)^2+1)/(2*x*y*(y+1)):
ser := n -> series(gf, x, n+2): Y := n -> expand(simplify(coeff(ser(n), x, n))):
A296186_row := n -> `if`(n=0, [0], PolynomialTools:-CoefficientList(Y(n), y)):
ListTools:-Flatten([seq(A296186_row(n), n=0..8)]); # Peter Luschny, Jan 13 2018
MATHEMATICA
S[n_, m_] := Binomial[n, m - 1] HypergeometricPFQ[{1 - m, 1 - n, -n }, {2, -m + n + 2}, -1]; T[n_, k_] := S[n, If[k >= n, 2 n - k + 1, k]]; Join[{{0}}, Table[T[n, k], {n, 1, 8}, {k, 1, 2 n}] ] // Flatten (* Peter Luschny, Jan 13 2018 *)
t[n_, m_] := Sum[ Binomial[n, i -1]*Binomial[n, i]*Binomial[n, m -i], {i, n}]/n;
t[0, m_] := 0; Table[t[n, m], {n, 8}, {m, 2 n}] // Flatten (* Robert G. Wilson v, Jan 22 2018 *)
PROG
(Maxima)
T(n, m):=if n=0 then 0 else 1/n*sum((binomial(n, i-1)*binomial(n, i)*binomial(n, m+1-i)), i, 1, n);
CROSSREFS
Sequence in context: A086626 A244500 A300695 * A232967 A144163 A352472
KEYWORD
nonn,tabf
AUTHOR
Vladimir Kruchinin, Jan 13 2018
STATUS
approved