login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows, T(n,m) = (1/n)*Sum_{i=1..n} C(n,i-1)*C(n,i)*C(n,m+1-i), T(0,0)=0, m<2n.
0

%I #54 Jan 22 2018 21:25:42

%S 0,1,1,1,3,3,1,1,6,13,13,6,1,1,10,36,65,65,36,10,1,1,15,80,220,356,

%T 356,220,80,15,1,1,21,155,595,1380,2072,2072,1380,595,155,21,1,1,28,

%U 273,1386,4305,8862,12601,12601,8862,4305,1386,273,28,1,1,36,448,2898,11536,30828,58072,79221,79221,58072,30828,11536

%N Triangle read by rows, T(n,m) = (1/n)*Sum_{i=1..n} C(n,i-1)*C(n,i)*C(n,m+1-i), T(0,0)=0, m<2n.

%F G.f.: (-sqrt((1-x*(y+1)^2)^2-4*x^2*y*(y+1)^2)-x*(y+1)^2+1)/(2*x*(y+1)*y).

%e Triangle begins

%e 0;

%e 1, 1;

%e 1, 3, 3, 1;

%e 1, 6, 13, 13, 6, 1;

%e 1, 10, 36, 65, 65, 36, 10, 1;

%e 1, 15, 80, 220, 356, 356, 220, 80, 15, 1;

%p gf := (-sqrt((1-x*(y+1)^2)^2-4*x^2*y*(y+1)^2)-x*(y+1)^2+1)/(2*x*y*(y+1)):

%p ser := n -> series(gf,x,n+2): Y := n -> expand(simplify(coeff(ser(n),x,n))):

%p A296186_row := n -> `if`(n=0, [0], PolynomialTools:-CoefficientList(Y(n),y)):

%p ListTools:-Flatten([seq(A296186_row(n), n=0..8)]); # _Peter Luschny_, Jan 13 2018

%t S[n_, m_] := Binomial[n, m - 1] HypergeometricPFQ[{1 - m, 1 - n, -n }, {2, -m + n + 2}, -1]; T[n_, k_] := S[n, If[k >= n, 2 n - k + 1, k]]; Join[{{0}}, Table[T[n, k], {n, 1, 8}, {k, 1, 2 n}] ] // Flatten (* _Peter Luschny_, Jan 13 2018 *)

%t t[n_, m_] := Sum[ Binomial[n, i -1]*Binomial[n, i]*Binomial[n, m -i], {i, n}]/n;

%t t[0, m_] := 0; Table[t[n, m], {n, 8}, {m, 2 n}] // Flatten (* _Robert G. Wilson v_, Jan 22 2018 *)

%o (Maxima)

%o T(n,m):=if n=0 then 0 else 1/n*sum((binomial(n,i-1)*binomial(n,i)*binomial(n,m+1-i)),i,1,n);

%K nonn,tabf

%O 0,5

%A _Vladimir Kruchinin_, Jan 13 2018