|
|
A296048
|
|
Expansion of e.g.f. Product_{k>=1} ((1 - x^k)/(1 + x^k))^(1/k).
|
|
0
|
|
|
1, -2, 2, -4, 32, -128, 496, -2336, 29312, -395776, 3194624, -21951488, 277270528, -4027191296, 38850203648, -739834458112, 19460560584704, -299971773661184, 3169121209090048, -51853341314514944, 1234704403684130816, -30653318499154788352, 658369600764729884672, -10809496145754051313664
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..23.
|
|
FORMULA
|
E.g.f.: exp(-2*Sum_{k>=1} A001227(k)*x^k/k).
E.g.f.: exp(-Sum_{k>=1} A054844(k)*x^k/k).
|
|
MAPLE
|
a:=series(mul(((1-x^k)/(1+x^k))^(1/k), k=1..100), x=0, 24): seq(n!*coeff(a, x, n), n=0..23); # Paolo P. Lava, Mar 27 2019
|
|
MATHEMATICA
|
nmax = 23; CoefficientList[Series[Product[((1 - x^k)/(1 + x^k))^(1/k), {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]!
nmax = 23; CoefficientList[Series[Exp[-2 Sum[Total[Mod[Divisors[k], 2] x^k]/k, {k, 1, nmax}]], {x, 0, nmax}], x] Range[0, nmax]!
|
|
CROSSREFS
|
Cf. A001227, A028342, A028343, A054844, A156616, A168243, A285675, A294356, A295792.
Sequence in context: A032334 A032082 A257616 * A327011 A300361 A257617
Adjacent sequences: A296045 A296046 A296047 * A296049 A296050 A296051
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Ilya Gutkovskiy, Dec 03 2017
|
|
STATUS
|
approved
|
|
|
|