login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257616
Triangle read by rows: T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
10
1, 2, 2, 4, 32, 4, 8, 312, 312, 8, 16, 2656, 8736, 2656, 16, 32, 21664, 175424, 175424, 21664, 32, 64, 174336, 3019200, 7016960, 3019200, 174336, 64, 128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128, 256, 11182592, 722956288, 5907889664, 11379596800, 5907889664, 722956288, 11182592, 256
OFFSET
0,2
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0, else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = 6*x + 2.
Sum_{k=0..n} T(n, k) = A049308(n).
From G. C. Greubel, Mar 21 2022: (Start)
T(n, k) = (a*k + b)*T(n-1, k) + (a*(n-k) + b)*T(n-1, k-1), with T(n, 0) = 1, a = 6, and b = 2.
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n).
T(n, 1) = (2^n/3)*(2^(2*n+1) - (3*n+2)). (End)
EXAMPLE
Triangle begins as:
1;
2, 2;
4, 32, 4;
8, 312, 312, 8;
16, 2656, 8736, 2656, 16;
32, 21664, 175424, 175424, 21664, 32;
64, 174336, 3019200, 7016960, 3019200, 174336, 64;
128, 1397120, 47847552, 218838400, 218838400, 47847552, 1397120, 128;
MATHEMATICA
T[n_, k_, a_, b_]:= T[n, k, a, b]= If[k<0 || k>n, 0, If[n==0, 1, (a*(n-k)+b)*T[n-1, k-1, a, b] + (a*k+b)*T[n-1, k, a, b]]];
Table[T[n, k, 6, 2], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 21 2022 *)
PROG
(Sage)
def T(n, k, a, b): # A257610
if (k<0 or k>n): return 0
elif (n==0): return 1
else: return (a*k+b)*T(n-1, k, a, b) + (a*(n-k)+b)*T(n-1, k-1, a, b)
flatten([[T(n, k, 6, 2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 21 2022
CROSSREFS
Cf. A000079, A049308 (row sums), A142461, A257625.
Similar sequences listed in A256890.
Sequence in context: A266046 A032334 A032082 * A296048 A327011 A300361
KEYWORD
nonn,tabl
AUTHOR
Dale Gerdemann, May 09 2015
STATUS
approved