login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295343
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f. exp(-Sum_{j=1..k} x^j/j!).
0
1, 1, 0, 1, -1, 0, 1, -1, 1, 0, 1, -1, 0, -1, 0, 1, -1, 0, 2, 1, 0, 1, -1, 0, 1, -2, -1, 0, 1, -1, 0, 1, 2, -6, 1, 0, 1, -1, 0, 1, 1, -6, 16, -1, 0, 1, -1, 0, 1, 1, -1, -14, 20, 1, 0, 1, -1, 0, 1, 1, -2, -14, 20, -132, -1, 0, 1, -1, 0, 1, 1, -2, -8, -15, 204, -28, 1, 0, 1, -1, 0, 1, 1, -2, -9, -15, 99, 28, 1216, -1, 0
OFFSET
0,19
FORMULA
E.g.f. of column k: exp(-Sum_{j=1..k} x^j/j!).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, -1 -1, -1, -1, -1, ...
0, 1, 0, 0, 0, 0, ...
0, -1, 2, 1, 1, 1, ...
0, 1, -2, 2, 1, 1, ...
0, -1, -6, -6, -1, -2, ...
MATHEMATICA
Table[Function[k, n! SeriesCoefficient[Exp[-Sum[x^i/i!, {i, 1, k}]], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
Table[Function[k, n! SeriesCoefficient[Exp[1 - Exp[x] Gamma[k + 1, x]/Gamma[k + 1]], {x, 0, n}]][j - n], {j, 0, 12}, {n, 0, j}] // Flatten
CROSSREFS
Columns k=0..3 give A000007, A033999, A001464, A014775.
Main diagonal gives A000587.
Cf. A229223.
Sequence in context: A070107 A299908 A044933 * A025915 A081285 A255361
KEYWORD
sign,tabl
AUTHOR
Ilya Gutkovskiy, Nov 20 2017
STATUS
approved