login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A295340
Numbers congruent to 11 or 13 mod 15.
1
11, 13, 26, 28, 41, 43, 56, 58, 71, 73, 86, 88, 101, 103, 116, 118, 131, 133, 146, 148, 161, 163, 176, 178, 191, 193, 206, 208, 221, 223, 236, 238, 251, 253, 266, 268, 281, 283, 296, 298, 311, 313, 326, 328, 341, 343, 356, 358, 371, 373, 386, 388, 401, 403, 416, 418, 431, 433
OFFSET
1,1
COMMENTS
Includes every prime and twin prime (as pairs of consecutive primes) congruent to 11 or 13 mod 30.
FORMULA
a(n) = (1/4)*(-1)^n*(3*(-1)^n*(10*n + 1) - 11) for n > 0.
From Colin Barker, Dec 07 2017: (Start)
G.f.: x*(11 + 2*x + 2*x^2) / ((1 - x)^2*(1 + x)).
a(n) = (15*n - 4) / 2 for n even.
a(n) = (15*n + 7) / 2 for n odd.
a(n) = a(n-1) + a(n-2) - a(n-3) for n > 3.
(End)
a(n) = ceiling(15*n/2) + 5*(n mod 2) - 2 for n > 0. - Mikk Heidemaa, Sep 06 2018
a(n + 2) = a(n) + 15. - David A. Corneth, Sep 06 2018
a(n) = (11/2)*(n mod 2) + 15*n/2 - 2 for n > 0. - Mikk Heidemaa, Sep 08 2018
f(n) = 15*n - ((13*n + 17) mod 26) for n > 0 yields odd terms. - Mikk Heidemaa, Oct 28 2019
a(n) = 11*ceiling(1/2*n) + 2*n - 2 for n > 0. - Mikk Heidemaa, Nov 04 2019
E.g.f.: 2 + ((30*x + 3)*exp(x) - 11*exp(-x))/4. - David Lovler, Sep 08 2022
MATHEMATICA
ParallelMap[11 * Ceiling[#/2] + 2 * # - 2 &, Range@ 10^3]
CoefficientList[ Series[(2x^2 + 2x + 11)/((1 + x) (x - 1)^2), {x, 0, 60}], x] (* or *)
LinearRecurrence[{1, 1, -1}, {11, 13, 26}, 60] (* Robert G. Wilson v, Jan 09 2018 *)
Select[Range[500], MemberQ[{11, 13}, Mod[#, 15]] &] (* Vincenzo Librandi, Sep 06 2018 *)
11/2 * Mod[#, 2] + 15 * #/2 - 2 &/@ Range@ 500 (* Mikk Heidemaa, Sep 08 2018 *)
PROG
(PARI) Vec(x*(11 + 2*x + 2*x^2) / ((1 - x)^2*(1 + x)) + O(x^40)) \\ Colin Barker, Dec 07 2017
(PARI) a(n) = if(n%2, (15*n+7)/2, (15*n-4)/2); \\ Altug Alkan, Sep 06 2018
(PARI) a(n) = [11, -2][(n - 1)%2 + 1] + 15*(n \ 2) \\ David A. Corneth, Sep 06 2018
(Magma) [n: n in [1..500] | n mod 15 in [11, 13]]; // Vincenzo Librandi, Sep 06 2018
CROSSREFS
Cf. A132238 (subsequence of primes), A132241 (subsequence of twin primes).
Sequence in context: A090433 A374059 A022325 * A153055 A146915 A067786
KEYWORD
nonn,easy
AUTHOR
Mikk Heidemaa, Nov 20 2017
EXTENSIONS
Name simplified by David A. Corneth, Sep 06 2018
STATUS
approved