login
A294892
Number of proper divisors d of n such that either d=1 or Stern polynomial B(d,x) is reducible.
6
0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 3, 1, 1, 1, 5, 1, 1, 2, 3, 1, 4, 1, 4, 1, 1, 1, 6, 1, 1, 1, 5, 1, 4, 1, 3, 3, 1, 1, 7, 1, 2, 1, 3, 1, 5, 1, 5, 1, 1, 1, 8, 1, 1, 3, 5, 1, 4, 1, 3, 1, 4, 1, 9, 1, 1, 2, 3, 1, 4, 1, 7, 3, 1, 1, 8, 1, 1, 1, 5, 1, 8, 1, 3, 1, 1, 1, 9, 1, 3, 3, 5, 1, 4, 1, 5, 4
OFFSET
1,8
LINKS
FORMULA
a(n) = Sum_{d|n, d<n} (1-A283991(d)).
a(n) + A294891(n) = A032741(n).
a(n) = A294894(n) + A283991(n) - 1.
EXAMPLE
For n=48, its proper divisors are [1, 2, 3, 4, 6, 8, 12, 16, 24]. After 1, the divisors 4, 6, 8, 12, 16 and 24 are not found in A186891, thus a(48) = 1+6 = 7.
For n=50, its proper divisors are [1, 2, 5, 10, 25]. After 1, only 10 is not found in A186891, thus a(50) = 1+1 = 2.
PROG
(PARI)
ps(n) = if(n<2, n, if(n%2, ps(n\2)+ps(n\2+1), 'x*ps(n\2)));
A283991(n) = polisirreducible(ps(n));
A294892(n) = sumdiv(n, d, (d<n)*(0==A283991(d)));
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 10 2017
STATUS
approved