The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A294387 Expansion of chi(q^3) / chi^3(q) in powers of q where chi() is a Ramanujan theta function. 1
 1, -3, 6, -12, 21, -36, 60, -96, 150, -228, 342, -504, 732, -1050, 1488, -2088, 2901, -3996, 5460, -7404, 9972, -13344, 17748, -23472, 30876, -40413, 52644, -68268, 88152, -113364, 145224, -185352, 235734, -298800, 377514, -475488, 597108, -747690, 933672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of eta(q)^3 * eta(q^4)^3 * eta(q^6)^2 / (eta(q^2)^6 * eta(q^3) * eta(q^12)) in powers of q. Expansion of (c(q) - c(q^4)) * (c(q) - 4*c(q^4)) / (c(q) + 2*c(q^4))^2 in powers of q where c(q) is a cubic AGM theta function. Expansion of b(q^2) / b(-q) = b(q^2) / (2*b(q^4) - b(q)) in powers of q where b() is a cubic AGM theta function. Expansion of (3*a(q^12) - a(q^4)) / (a(q) + a(q^2)) = -1/2 + 3/2*(a(-q^3) + 2*a(q^3)) / (2*a(q) + a(-q)) in powers of q where a() is a cubic AGM theta function. Euler transform of period 12 sequence [-3, 3, -2, 0, -3, 2, -3, 0, -2, 3, -3, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128111. G.f. A(q) = (1 - T(q)) / (1 + 2*T(q))  where T(q) = q*A128111(q^3). G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v) + 3*(u*v)^2 - 4*(u*v)^3 + 2*(u*v)^4 - (u^3 + v^3). G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u*(1 + u + u^2) - v^3*(1 - 2*u + 4*u^2). G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 + u2 + u1*u2 - u3*u6 - 2*u1*u2*u3*u6. G.f.: Product_{k>0} (1 + x^(6*k-3)) / (1 + x^(2*k-1))^3. a(n) = (-1)^n * A128128(n). Convolution inverse of A132972. a(3*n + 1) = -3 * A164270(n). a(3*n + 2) = 6 * A164271(n). EXAMPLE G.f. = 1 - 3*x + 6*x^2 - 12*x^3 + 21*x^4 - 36*x^5 + 60*x^6 - 96*x^7 + ... MATHEMATICA a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q]^3 / QPochhammer[ q^3, -q^3], {q, 0, n}]; PROG (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2 / (eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A)), n))}; (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3*eta(q^4)^3*eta(q^6)^2/(eta(q^2)^6*eta(q^3)*eta(q^12)))} \\ Altug Alkan, Mar 21 2018 CROSSREFS Cf. A128111, A128128, A132972, A164270, A164271. Sequence in context: A054578 A115855 A234248 * A128128 A162920 A247662 Adjacent sequences:  A294384 A294385 A294386 * A294388 A294389 A294390 KEYWORD sign AUTHOR Michael Somos, Oct 29 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 4 23:44 EST 2020. Contains 338943 sequences. (Running on oeis4.)