Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 May 07 2023 07:37:52
%S 1,-3,6,-12,21,-36,60,-96,150,-228,342,-504,732,-1050,1488,-2088,2901,
%T -3996,5460,-7404,9972,-13344,17748,-23472,30876,-40413,52644,-68268,
%U 88152,-113364,145224,-185352,235734,-298800,377514,-475488,597108,-747690,933672
%N Expansion of chi(q^3) / chi^3(q) in powers of q where chi() is a Ramanujan theta function.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%C Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
%H G. C. Greubel, <a href="/A294387/b294387.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of eta(q)^3 * eta(q^4)^3 * eta(q^6)^2 / (eta(q^2)^6 * eta(q^3) * eta(q^12)) in powers of q.
%F Expansion of (c(q) - c(q^4)) * (c(q) - 4*c(q^4)) / (c(q) + 2*c(q^4))^2 in powers of q where c(q) is a cubic AGM theta function.
%F Expansion of b(q^2) / b(-q) = b(q^2) / (2*b(q^4) - b(q)) in powers of q where b() is a cubic AGM theta function.
%F Expansion of (3*a(q^12) - a(q^4)) / (a(q) + a(q^2)) = -1/2 + 3/2*(a(-q^3) + 2*a(q^3)) / (2*a(q) + a(-q)) in powers of q where a() is a cubic AGM theta function.
%F Euler transform of period 12 sequence [-3, 3, -2, 0, -3, 2, -3, 0, -2, 3, -3, 0, ...].
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (36 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128111.
%F G.f. A(q) = (1 - T(q)) / (1 + 2*T(q)) where T(q) = q*A128111(q^3).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u*v) + 3*(u*v)^2 - 4*(u*v)^3 + 2*(u*v)^4 - (u^3 + v^3).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = u*(1 + u + u^2) - v^3*(1 - 2*u + 4*u^2).
%F G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u1 + u2 + u1*u2 - u3*u6 - 2*u1*u2*u3*u6.
%F G.f.: Product_{k>0} (1 + x^(6*k-3)) / (1 + x^(2*k-1))^3.
%F a(n) = (-1)^n * A128128(n). Convolution inverse of A132972.
%F a(3*n + 1) = -3 * A164270(n). a(3*n + 2) = 6 * A164271(n).
%F Empirical : Sum_{n>=0} a(n)/exp(Pi*n) = 1/2*(2+2*3^(1/2))^(1/3), validated up to 1000 digits. - _Simon Plouffe_, May 06, 2023
%e G.f. = 1 - 3*x + 6*x^2 - 12*x^3 + 21*x^4 - 36*x^5 + 60*x^6 - 96*x^7 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ q, -q]^3 / QPochhammer[ q^3, -q^3], {q, 0, n}];
%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^6 + A)^2 / (eta(x^2 + A)^6 * eta(x^3 + A) * eta(x^12 + A)), n))};
%o (PARI) lista(nn) = {q='q+O('q^nn); Vec(eta(q)^3*eta(q^4)^3*eta(q^6)^2/(eta(q^2)^6*eta(q^3)*eta(q^12)))} \\ _Altug Alkan_, Mar 21 2018
%Y Cf. A128111, A128128, A132972, A164270, A164271.
%K sign
%O 0,2
%A _Michael Somos_, Oct 29 2017