login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294305
Sum of the tenth powers of the parts in the partitions of n into two distinct parts.
1
0, 0, 1025, 59050, 1108650, 10815226, 71340451, 352767124, 1427557524, 4904576300, 14914341925, 40791300350, 102769130750, 240345147350, 529882277575, 1105458926376, 2206044295976, 4218551412024, 7792505423049, 13913571680850, 24163571680850, 40817515234450
OFFSET
1,3
LINKS
Index entries for linear recurrences with constant coefficients, signature (1,11,-11,-55,55,165,-165,-330,330,462,-462,-462,462,330,-330,-165,165,55,-55,-11,11,1,-1).
FORMULA
a(n) = Sum_{i=1..floor((n-1)/2)} i^10 + (n-i)^10.
From Colin Barker, Nov 21 2017: (Start)
G.f.: x^3*(1025 + 58025*x + 1038325*x^2 + 9068301*x^3 + 49036000*x^4 + 177845712*x^5 + 466571800*x^6 + 905612928*x^7 + 1343112850*x^8 + 1525782114*x^9 + 1343112850*x^10 + 906468090*x^11 + 466571800*x^12 + 178253064*x^13 + 49036000*x^14 + 9115128*x^15 + 1038325*x^16 + 59037*x^17 + 1025*x^18 + x^19) / ((1 - x)^12*(1 + x)^11).
a(n) = a(n-1) + 11*a(n-2) - 11*a(n-3) - 55*a(n-4) + 55*a(n-5) + 165*a(n-6) - 165*a(n-7) - 330*a(n-8) + 330*a(n-9) + 462*a(n-10) - 462*a(n-11) - 462*a(n-12) + 462*a(n-13) + 330*a(n-14) - 330*a(n-15) - 165*a(n-16) + 165*a(n-17) + 55*a(n-18) - 55*a(n-19) - 11*a(n-20) + 11*a(n-21) + a(n-22) - a(n-23) for n>23.
(End)
MATHEMATICA
Table[Sum[i^10 + (n - i)^10, {i, Floor[(n-1)/2]}], {n, 30}]
PROG
(PARI) a(n) = sum(i=1, (n-1)\2, i^10 + (n-i)^10); \\ Michel Marcus, Nov 05 2017
(PARI) concat(vector(2), Vec(x^3*(1025 + 58025*x + 1038325*x^2 + 9068301*x^3 + 49036000*x^4 + 177845712*x^5 + 466571800*x^6 + 905612928*x^7 + 1343112850*x^8 + 1525782114*x^9 + 1343112850*x^10 + 906468090*x^11 + 466571800*x^12 + 178253064*x^13 + 49036000*x^14 + 9115128*x^15 + 1038325*x^16 + 59037*x^17 + 1025*x^18 + x^19) / ((1 - x)^12*(1 + x)^11) + O(x^40))) \\ Colin Barker, Nov 21 2017
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 27 2017
STATUS
approved