login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294187
Numbers k == 77 (mod 120) such that (2*k-1)*2^((k-1)/2), (2*k-1)*3^((k-1)/2) and (2*k-1)*5^((k-1)/2) are congruent to 1 (mod k).
0
197, 317, 557, 677, 797, 1277, 1637, 1877, 1997, 2237, 2357, 2477, 2837, 2957, 3557, 3677, 3797, 3917, 4157, 4397, 4517, 4637, 4877, 5237, 5477, 5717, 6197, 6317, 6917, 7517, 7757, 7877, 8117, 8237, 8597, 8837, 9437, 9677, 10037
OFFSET
1,1
COMMENTS
There are no composite numbers up to 2*10^17. The first composite term is 229467972529064957.
MAPLE
a:=k->`if`(k mod 120 = 77 and (2*k-1)*2^((k-1)/2) mod k = 1 and (2*k-1)*3^((k-1)/2) mod k = 1 and (2*k-1)*5^((k-1)/2) mod k = 1, k, NULL): seq(a(k), k=1..50); # Muniru A Asiru, Mar 11 2018
MATHEMATICA
k = 77; lst = {}; While[k < 12000, If[Mod[(2k -1) PowerMod[{2, 3, 5}, (k -1)/2, k], k] == {1, 1, 1}, AppendTo[lst, k]]; k += 120]; lst (* Robert G. Wilson v, Feb 13 2018 *)
PROG
(PARI) is(n) = n%120==77 &&(2*n-1)* Mod(2, n)^((n-1)\2)==1 &&(2*n-1)* Mod(3, n)^((n-1)\2)==1 &&(2*n-1)* Mod(5, n)^((n-1)\2)==1 \\
(GAP) Filtered([1..11000], k->k mod 120 = 77 and (2*k-1)*2^((k-1)/2) mod k = 1 and (2*k-1)*3^((k-1)/2) mod k = 1 and (2*k-1)*5^((k-1)/2) mod k = 1); # Muniru A Asiru, Mar 11 2018
CROSSREFS
Cf. A001567.
Sequence in context: A142121 A142274 A142624 * A158223 A142503 A142568
KEYWORD
nonn
AUTHOR
Jonas Kaiser, Feb 11 2018
STATUS
approved