login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294188
Square array A(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of e.g.f.: exp(k*(1/(1-x)^k - 1)).
4
1, 1, 0, 1, 1, 0, 1, 4, 3, 0, 1, 9, 28, 13, 0, 1, 16, 117, 256, 73, 0, 1, 25, 336, 1881, 2848, 501, 0, 1, 36, 775, 8416, 35505, 37024, 4051, 0, 1, 49, 1548, 27925, 241696, 763209, 547936, 37633, 0, 1, 64, 2793, 75888, 1134025, 7769856, 18309861, 9064192
OFFSET
0,8
LINKS
FORMULA
A(0,k) = 1 and A(n,k) = k^2 * (n-1)! * Sum_{j=1..n} binomial(j+k-1,k)*A(n-j,k)/(n-j)! for n > 0.
EXAMPLE
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
0, 1, 4, 9, 16, ...
0, 3, 28, 117, 336, ...
0, 13, 256, 1881, 8416, ...
0, 73, 2848, 35505, 241696, ...
0, 501, 37024, 763209, 7769856, ...
CROSSREFS
Columns k=0..3 give A000007, A000262, A294189, A294190.
Rows n=0..1 give A000012, A000290.
Main diagonal gives A294192.
Sequence in context: A298739 A346366 A325011 * A331956 A325019 A152151
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Oct 24 2017
STATUS
approved