login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294173
Numbers k whose nearest neighbors have the same number of divisors, the same number of distinct prime factors, and the same sum of divisors.
1
34, 55, 919, 1241, 4149, 4188, 7170, 12566, 15086, 24882, 25020, 26610, 51836, 53964, 59988, 77058, 143370, 150420, 167561, 170562, 205728, 215070, 220818, 418308, 564858, 731321, 907255, 910316, 986154, 1239870, 1569336, 1622914, 1841861, 1887240, 1979307, 2229012, 2262108
OFFSET
1,1
COMMENTS
mu(k-1) = mu(k+1), where mu(k) = A008683(k), since k-1 and k+1 have the same number of distinct prime factors.
tau(k-1) = tau(k+1) = abs(phi(k-1) - phi(k+1)) iff abs(phi(k-1) - phi(k+1)) = 4, where phi(j) is A000010. When tau(j) = 4 omega(j) = 2 and phi(j), the product of two even numbers is divisible by 4.
For known elements:
- sigma(k +- 1) and tau(k +- 1) the greatest common divisor is 4.
- sigma(k +- 1) is divisible by tau(k +- 1).
- the digital root of sigma(k +- 1) is either 3 or 9.
- the prime signature of k +- 1 is the same (see question below).
The first prime terms are 919, 110495719, 2587274227, 3908452759, 4020447619, and 9314901619. - Giovanni Resta, Feb 12 2018
Are the prime signatures of k +- 1 always the same? - Andrey Zabolotskiy, Feb 14 2018
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..1478
EXAMPLE
34 is in the sequence because tau(33)=tau(35)=4, omega(33)=omega(35)=2, and sigma(33)=sigma(35)=48.
919 is in the sequence because tau(918)=tau(920)=16, omega(918)=omega(920)=3, and sigma(918)=sigma(920)=2160.
MAPLE
with(numtheory):
select(k->sigma(k-1)=sigma(k+1) and mobius(k-1)=mobius(k+1) and tau(k-1)=tau(k+1), [$2..2000000]); # Muniru A Asiru, Feb 17 2018
MATHEMATICA
1 + Position[Partition[Array[{DivisorSigma[0, #], DivisorSigma[1, #], PrimeOmega[#]} &, 10^6], 3, 1], _?(#[[1]] == +#[[-1]] &), {1}, Heads -> False][[All, 1]] (* Michael De Vlieger, Feb 17 2018 *)
PROG
(GAP) Filtered([2..2000000], k->Sigma(k-1)=Sigma(k+1) and Number(FactorsInt(k-1))=Number(FactorsInt(k+1)) and Tau(k-1)=Tau(k+1)); # Muniru A Asiru, Feb 17 2018
(PARI) list(lim)=my(v=List(), k2=7, s2=sigma(k2), k1=8, s1=sigma(k1), s); forfactored(k=9, 1+lim\1, s=sigma(k); if(s==s2 && numdiv(k)==numdiv(k2) && omega(k)==omega(k2), listput(v, k1[1])); k2=k1; k1=k; s2=s1; s1=s); Vec(v) \\ Charles R Greathouse IV, Feb 20 2018
CROSSREFS
Intersection of A067888, A088070, and A055574.
Sequence in context: A259676 A227304 A055574 * A176687 A224896 A103558
KEYWORD
nonn
AUTHOR
Torlach Rush, Feb 10 2018
STATUS
approved