login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294172
Maximum value of the cyclic convolution of the first n positive integers with themselves.
1
1, 5, 13, 28, 50, 83, 126, 184, 255, 345, 451, 580, 728, 903, 1100, 1328, 1581, 1869, 2185, 2540, 2926, 3355, 3818, 4328, 4875, 5473, 6111, 6804, 7540, 8335, 9176, 10080, 11033, 12053, 13125, 14268, 15466, 16739, 18070, 19480, 20951, 22505, 24123, 25828, 27600
OFFSET
1,2
COMMENTS
Conjecture: a(n) = (n*(13 + 3*(-1)^n + 24*n + 14*n^2))/48, and then lim_{n -> infinity} a(n)/n^3 = 7/24.
The conjectured formula is true. See links. - Sela Fried, Aug 13 2024.
FORMULA
a(n) = Max {x; x=Sum_{i=1..n}(n-i+1)*(1+(i+k) mod n); for k=1..n}.
Conjectures from Colin Barker, Feb 11 2018: (Start)
G.f.: x*(1 + 3*x + 2*x^2 + x^3) / ((1 - x)^4*(1 + x)^2).
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n>6.
(End)
EXAMPLE
For n = 4, the four possible cyclic convolutions of the first four positive integers with themselves are:
(1,2,3,4).(4,3,2,1) = 1*4 + 2*3 + 3*2 + 4*1 = 4 + 6 + 6 + 4 = 20,
(1,2,3,4).(3,2,1,4) = 1*3 + 2*2 + 3*1 + 4*4 = 3 + 4 + 3 + 16 = 26,
(1,2,3,4).(2,1,4,3) = 1*2 + 2*1 + 3*4 + 4*3 = 2 + 2 + 12 + 12 = 28,
(1,2,3,4).(1,4,3,2) = 1*1 + 2*4 + 3*3 + 4*2 = 1 + 8 + 9 + 8 = 26,
then a(4)=28 because 28 is the maximum among the four values.
MATHEMATICA
a[n_] := Max[Table[Range[n].RotateRight[Reverse[Range[n]], k], {k, 0, n - 1}]];
Table[a[n], {n, 1, 45}]
PROG
(PARI) a(n) = vecmax(vector(n, k, sum(i=1, n, (n-i+1)*(1+(i+k) % n)))); \\ Michel Marcus, Feb 11 2018
CROSSREFS
Sequence in context: A316537 A175254 A211636 * A055328 A027962 A023537
KEYWORD
nonn
AUTHOR
Andres Cicuttin, Feb 10 2018
STATUS
approved