login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294070
a(n) = (1/4)*(n^2 - 2*n)^2 + (9/4)*(n^2 - 2*n) + 6.
1
4, 6, 15, 40, 96, 204, 391, 690, 1140, 1786, 2679, 3876, 5440, 7440, 9951, 13054, 16836, 21390, 26815, 33216, 40704, 49396, 59415, 70890, 83956, 98754, 115431, 134140, 155040, 178296, 204079, 232566, 263940, 298390, 336111, 377304, 422176, 470940, 523815
OFFSET
1,1
LINKS
SESC NSU Correspondence School, First assignments for 2018/2019 (in Russian), Kvant, 2018, No. 7, p. 42, Mathematics section, 6th grade, exercise no. 2. "Calculate and show in a reduced fraction form the following sum: 1/(2*3) + 2/(3*5) + 3/(5*8) + 4/(8*12) + 5/(12*17)."
FORMULA
a(n) = A152948(n) * A152948(n+1).
From Muniru A Asiru, Aug 16 2018: (Start)
a(n) = (n^2 - 3*n + 6)*(n^2 - n + 4)/4.
a(n) = A152948(n)*A027689(n-1)/2. (End)
a(n) = A266883(A061925(n-1)). - Bruno Berselli, Aug 30 2018
From Colin Barker, Nov 26 2018: (Start)
G.f.: x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 5.
a(n) = (24 - 18*n + 13*n^2 - 4*n^3 + n^4)/4. (End)
E.g.f.: (1/4)*exp(x)*(16 + 8*x + 14*x^2 + 6*x^3 + x^4). - Stefano Spezia, Nov 30 2018
EXAMPLE
2*2, 2*3, 3*5, 5*8, 8*12, 12*17, 17*23, 23*30, 30*38, ...
MAPLE
b:=n->(n^2-3*n+6)/2: seq(b(n)*b(n+1), n=1..40); # Muniru A Asiru, Aug 16 2018
MATHEMATICA
Times@@@Partition[Array[(#^2 -3# +6)/2 &, 40], 2, 1] (* Michael De Vlieger, Sep 24 2018 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {4, 6, 15, 40, 96}, 40] (* G. C. Greubel, Feb 10 2019 *)
PROG
(GAP) List([1..40], n->(n^2-3*n+6)*(n^2-n+4)/4); # Muniru A Asiru, Aug 16 2018
(Magma) [(n^2-3*n+6)*(n^2-n+4)/4: n in [1..40]]; // Vincenzo Librandi, Aug 30 2018
(PARI) Vec(x*(4 - 14*x + 25*x^2 - 15*x^3 + 6*x^4)/(1-x)^5 + O(x^40)) \\ Colin Barker, Nov 26 2018
(Sage) [(n^2-3*n+6)*(n^2-n+4)/4 for n in (1..40)] # G. C. Greubel, Feb 10 2019
CROSSREFS
Sequence in context: A351145 A034299 A007135 * A073603 A064910 A305580
KEYWORD
nonn,easy
AUTHOR
Jan Lakota Nono, Aug 14 2018
STATUS
approved