OFFSET
1,2
COMMENTS
Exercise 52 in chapter 5.2.2 of Knuth's TAOCP 3 asks: "What is the asymptotic behavior of the sum S_n = Sum_{t>=1} binomial(2n,n+t)*d(t)?" and mentions "This question arises in connection with the analysis of a tree traversal algorithm, exercise 2.3.1-11."
REFERENCES
D. E. Knuth, The Art of Computer Programming Second Edition. Vol. 3, Sorting and Searching. Chapter 5.2.2 Sorting by Exchanging, pages 138, 637 (answer to exercise 52). Addison-Wesley, Reading, MA, 1998.
EXAMPLE
The triangle begins:
1;
4, 6;
15, 27, 29;
56, 112, 128, 131;
210, 450, 540, 570, 572;
792, 1782, 2222, 2420, 2444, 2448;
3003, 7007, 9009, 10101, 10283, 10339, 10341;
11440, 27456, 36192, 41652, 42772, 43252, 43284, 43288;
MATHEMATICA
T[n_, m_] := Sum[Binomial[2*n, n + k] * DivisorSigma[0, k], {k, 1, m}]; Table[T[n, m], {n, 1, 9}, {m, 1, n}] // Flatten (* Amiram Eldar, Feb 02 2022 *)
PROG
(PARI) for(n=1, 10, for(m=1, n, my(s=sum(t=1, m, binomial(2*n, n+t)*numdiv(t))); print1(s, ", ")))
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Hugo Pfoertner, Feb 02 2022
STATUS
approved