login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A293973 Sierpinski carpet iterations: start with a(0) = 1; read a(n) as a 3^n X 3^n binary matrix, replace 1 with [111;101;111] and 0 with [000;000;000], concatenate the 3^(n+1) rows of the new matrix. 0
1, 111101111, 111111111101101101111111111111000111101000101111000111111111111101101101111111111 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The term a(n) has 9^n = A001019(n) digits.

See A153490 for the Sierpinski carpet seen as an infinite matrix read by antidiagonals, and A292688 for a variant where the digits on the antidiagonals are concatenated.

See A292686 for a 1-dimensional variant.

LINKS

Table of n, a(n) for n=0..2.

EXAMPLE

Consider a(0) = 1 as a 1 X 1 matrix, replace the 1 by the 3 X 3 matrix E = [1,1,1; 1,0,1; 1,1,1], then this matrix is the result. Concatenating all elements yields a(1) = concat(111,101,111) = 111101111.

Now reconsider a(1) as the previously given 3 X 3 matrix E. Replace every 1 by that same matrix E. This yields the 9 X 9 matrix

   [ 1 1 1  1 1 1  1 1 1 ]

   [ 1 0 1  1 0 1  1 0 1 ]

   [ 1 1 1  1 1 1  1 1 1 ]

   [ 1 1 1  0 0 0  1 1 1 ]

   [ 1 0 1  0 0 0  1 0 1 ]

   [ 1 1 1  0 0 0  1 1 1 ]

   [ 1 1 1  1 1 1  1 1 1 ]

   [ 1 0 1  1 0 1  1 0 1 ]

   [ 1 1 1  1 1 1  1 1 1 ].

Concatenating all elements yields a(2) = 111111111101101101111111111111000111101000101111000111111111111101101101111111111.

PROG

(PARI) a(n, A=Mat(1), E=2^9-1-2^4)={for(k=1, n, A=matrix(3^k, 3^k, i, j, A[(i+2)\3, (j+2)\3]&&bittest(E, (i-1)%3*3+(j-1)%3))); fromdigits(apply(t->fromdigits(t~, 10), Vec(A)), 10^3^n)}

CROSSREFS

Cf. A153490, A293834, A001019, A292688 (antidiagonals 1..3^n of the term a(n) seen as 3^n X 3^n matrix), A292686 (1-dim. variant).

Sequence in context: A345631 A346286 A158755 * A094327 A180513 A202174

Adjacent sequences:  A293970 A293971 A293972 * A293974 A293975 A293976

KEYWORD

nonn

AUTHOR

M. F. Hasler, Oct 20 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 10:55 EST 2022. Contains 350472 sequences. (Running on oeis4.)