

A293970


Number of sets of exactly eight nonempty words with a total of n letters over nary alphabet such that within each prefix of a word every letter of the alphabet is at least as frequent as the subsequent alphabet letter.


2



10, 206, 1926, 13957, 85610, 476631, 2477550, 12289388, 58942808, 276126959, 1272626168, 5803545269, 26305047510, 118947441994, 538263144030, 2444159610896, 11163194878438, 51392032544011, 238939873029462, 1123916805738119, 5357138152220234, 25913264903132961
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

21,1


LINKS

Alois P. Heinz, Table of n, a(n) for n = 21..816


FORMULA

a(n) = [x^n y^8] Product_{j>=1} (1+y*x^j)^A000085(j).


MAPLE

g:= proc(n) option remember; `if`(n<2, 1, g(n1)+(n1)*g(n2)) end:
b:= proc(n, i) option remember; series(`if`(n=0, 1, `if`(i<1, 0,
add(b(ni*j, i1)*binomial(g(i), j)*x^j, j=0..n/i))), x, 9)
end:
a:= n> coeff(b(n$2), x, 8):
seq(a(n), n=21..45);


CROSSREFS

Column k=8 of A293815.
Cf. A000085.
Sequence in context: A041180 A027014 A088746 * A245912 A245918 A211107
Adjacent sequences: A293967 A293968 A293969 * A293971 A293972 A293973


KEYWORD

nonn


AUTHOR

Alois P. Heinz, Oct 20 2017


STATUS

approved



