login
A293767
Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4.
2
1, 3, 7, 14, 26, 47, 81, 137, 228, 376, 616, 1006, 1637, 2659, 4313, 6990, 11322, 18332, 29675, 48029, 77727, 125780, 203533, 329340, 532901, 862270, 1395201, 2257502, 3652735, 5910270, 9563039, 15473344, 25036419, 40509800, 65546257, 106056096
OFFSET
0,2
COMMENTS
The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. The initial values of each sequence in the following guide are a(0) = 1, a(2) = 3, b(0) = 2, b(1) = 4:
Conjecture: a(n)/a(n-1) -> (1 + sqrt(5))/2, the golden ratio. See A293358 for a guide to related sequences.
LINKS
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
EXAMPLE
a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that
a(2) = a(1) + a(0) + b(1) - 1 = 7;
Complement: (b(n)) = (2, 4, 5, 6, 8, 9, 10, 11, 12, 13, 15, 16, 17, ...)
MATHEMATICA
mex := First[Complement[Range[1, Max[#1] + 1], #1]] &;
a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4;
a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] - 1;
b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]];
Table[a[n], {n, 0, 40}] (* A293767 *)
Table[b[n], {n, 0, 10}]
CROSSREFS
Cf. A001622 (golden ratio), A293765.
Sequence in context: A001924 A079921 A369115 * A014168 A132109 A317779
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 29 2017
STATUS
approved