login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293362
Greatest integer k such that k/2^n < log 2.
3
0, 1, 2, 5, 11, 22, 44, 88, 177, 354, 709, 1419, 2839, 5678, 11356, 22713, 45426, 90852, 181704, 363408, 726817, 1453634, 2907269, 5814539, 11629079, 23258159, 46516319, 93032639, 186065279, 372130558, 744261117, 1488522235, 2977044471, 5954088943
OFFSET
0,3
LINKS
FORMULA
a(n) = floor(r*2^n), where r = log 2.
a(n) = A293363(n) - 1.
From Greg Huber, Feb 13 2019: (Start)
a(n) = nearest integer to the integral dx/sin(x) from Pi/(2^(2^n)) to Pi/2.
a(n) = nearest integer to -log(tan(Pi/(2^(2^n+1)))) (follows from the integral formula). (End)
MATHEMATICA
z = 120; r = Log[2];
Table[Floor[r*2^n], {n, 0, z}]; (* A293362 *)
Table[Ceiling[r*2^n], {n, 0, z}]; (* A293363 *)
Table[Round[r*2^n], {n, 0, z}]; (* A293364 *)
PROG
(PARI) {a(n) = (log(2)*2^n)\1 }; \\ G. C. Greubel, Feb 13 2019
(Magma) [Floor(Log(2)*2^n): n in [0..40]]; // G. C. Greubel, Feb 13 2019
(Sage) [floor(log(2)*2^n) for n in range(40)] # G. C. Greubel, Feb 13 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 11 2017
STATUS
approved