|
|
A084188
|
|
a(0)=1, a(n+1) = 2*a(n) + b(n+2), where b(n)=A004539(n) is the n-th bit in the binary expansion of sqrt(2).
|
|
4
|
|
|
1, 2, 5, 11, 22, 45, 90, 181, 362, 724, 1448, 2896, 5792, 11585, 23170, 46340, 92681, 185363, 370727, 741455, 1482910, 2965820, 5931641, 11863283, 23726566, 47453132, 94906265, 189812531, 379625062, 759250124
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Numerators in approximation sqrt(2) ~ a(n)/2^n.
a(n) is the number k such that {log_2(k} < 1/2 < {log_2(k+1)}, where { } = fractional part. Equivalently, the jump sequence of f(x) = log_2(x), in the sense that these are the positive integers k for which round(log_2(k)) < round(log_2(k+1)); see A219085. - Clark Kimberling, Jan 01 2013
|
|
LINKS
|
|
|
FORMULA
|
a(n) = floor(sqrt(2)*2^n).
a(n) = A017910(2*n+1). - # Peter Luschny, Sep 20 2011
|
|
MAPLE
|
|
|
MATHEMATICA
|
Table[Floor[Sqrt[2] 2^n], {n, 0, 30}] (* Harvey P. Dale, Aug 15 2013 *)
|
|
PROG
|
(Haskell)
a084188 n = a084188_list !! n
a084188_list = scanl1 (\u v -> 2 * u + v) a004539_list
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|