login
A293229
a(0) = 0; and for n > 0, a(n) = a(n-1) + (A008966(4n+3) - A008966(4n+1)).
3
0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 3, 4, 4, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 4, 4, 4, 3, 2, 2, 2, 3, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 5, 5, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 3, 2
OFFSET
0,12
COMMENTS
The sequence indicates about a possible bias (or lack of it) in the distribution of squarefree numbers among the numbers of the form 4k+1 vs. the numbers of the form 4k+3. See A293429 for another version.
The first negative term is a(1702) = -1.
FORMULA
a(0) = 0; and for n > 0, a(n) = a(n-1) + (A008966(4n+3) - A008966(4n+1)).
PROG
(PARI) up_to = 10000; bias = 0; for(k=0, up_to, bias += (issquarefree((4*k)+3)-issquarefree((4*k)+1)); write("b293229.txt", k, " ", bias));
(Scheme, with memoization-macro definec)
(definec (A293229 n) (if (zero? n) n (+ (- (A008966 (+ 3 (* 4 n))) (A008966 (+ 1 (* 4 n)))) (A293229 (- n 1)))))
CROSSREFS
Cf. A008966, A293428, A293429 (a variant).
Sequence in context: A334485 A347824 A031283 * A185437 A335660 A210681
KEYWORD
sign
AUTHOR
Antti Karttunen, Oct 12 2017
STATUS
approved