login
A293429
a(0) = 0; and for n > 0, a(n) = a(n-1) + (A008966(4n-1) - A008966(4n+1)).
3
0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 3, 4, 4, 4, 3, 3, 3, 2, 3, 3, 3, 3, 4, 3, 2, 2, 2, 3, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 3, 2, 2, 3, 3, 4, 4, 4, 4, 4, 3, 3, 4, 4, 5, 5, 5, 4, 4, 3, 3, 4, 3, 4, 4, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, 3
OFFSET
0,7
COMMENTS
The sequence indicates about a possible bias (or lack of it) in the distribution of squarefree numbers among the numbers of the form 4k-1 vs. the numbers of the form 4k+1. See A293229 for another version.
The first negative term is a(4014) = -1.
FORMULA
a(0) = 0; and for n > 0, a(n) = a(n-1) + (A008966(4n-1) - A008966(4n+1)).
PROG
(Scheme, with memoization-macro definec)
(definec (A293429 n) (if (zero? n) n (+ (- (A008966 (+ -1 (* 4 n))) (A008966 (+ 1 (* 4 n)))) (A293429 (- n 1)))))
CROSSREFS
Cf. A008966, A293229 (a variant).
Sequence in context: A094102 A220091 A063746 * A367313 A201075 A131338
KEYWORD
sign
AUTHOR
Antti Karttunen, Oct 16 2017
STATUS
approved