login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A293227
a(n) is the number of proper divisors of n that are squarefree.
4
0, 1, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 7, 1, 2, 3, 3, 3, 4, 1, 3, 3, 4, 1, 7, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 8, 1, 3, 4, 2, 3, 7, 1, 4, 3, 7, 1, 4, 1, 3, 4, 4, 3, 7, 1, 4, 2, 3, 1, 8, 3, 3, 3, 4, 1, 8, 3, 4, 3, 3, 3, 4, 1, 4, 4, 4, 1, 7, 1, 4, 7
OFFSET
1,4
FORMULA
a(n) = Sum_{d|n, d<n} A008966(d).
a(n) = A034444(n) - A008966(n).
a(n) = 2^A001221(n) - A008683(n)^2 = 2^omega(n) - mu(n)^2.
G.f.: Sum_{k>=1} mu(k)^2*x^(2*k)/(1 - x^k). - Ilya Gutkovskiy, Oct 28 2018
Sum_{k=1..n} a(k) ~ (6/Pi^2)*n*(log(n) + 2*(gamma - 1 - zeta'(2)/zeta(2))), where gamma is Euler's constant (A001620). - Amiram Eldar, Dec 01 2023
MAPLE
with(numtheory): seq(coeff(series(add(mobius(k)^2*x^(2*k)/(1-x^k), k=1..n), x, n+1), x, n), n = 1 .. 120); # Muniru A Asiru, Oct 28 2018
MATHEMATICA
Table[Count[Most[Divisors[n]], _?SquareFreeQ], {n, 110}] (* Harvey P. Dale, Jun 15 2021 *)
a[n_] := 2^PrimeNu[n] - Boole[SquareFreeQ[n]]; Array[a, 100] (* Amiram Eldar, Jun 30 2022 *)
PROG
(PARI) A293227(n) = sumdiv(n, d, (d<n)*issquarefree(d));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 08 2017
STATUS
approved