login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292498
G.f.: Sum_{n=-oo..+oo} Fibonacci(n+1) * x^n * (1-x^n)^n.
1
1, 1, 2, 3, 3, 8, 10, 21, 18, 67, 54, 144, 196, 377, 470, 1077, 1321, 2584, 3905, 6765, 10014, 18173, 27084, 46368, 73001, 121448, 191530, 319827, 505038, 832040, 1335766, 2178309, 3497250, 5710862, 9183554, 14931192, 24093521, 39088169, 63117470, 102363639, 165353391, 267914296, 433177813, 701408733, 1134249308, 1836422951, 2970148632
OFFSET
0,3
COMMENTS
Compare g.f. to: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.
LINKS
FORMULA
G.f. P(x) + Q(x) where
P(x) = Sum_{n>=0} Fibonacci(n+1) * x^n * (1-x^n)^n,
Q(x) = Sum_{n>=1} Fibonacci(n-1) * x^(n^2-n) / (1-x^n)^n.
a(n) ~ phi^(n+1) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Oct 10 2017
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 8*x^5 + 10*x^6 + 21*x^7 + 18*x^8 + 67*x^9 + 54*x^10 + 144*x^11 + 196*x^12 + 377*x^13 + 470*x^14 + 1077*x^15 + 1321*x^16 + 2584*x^17 + 3905*x^18 + 6765*x^19 + 10014*x^20 +...
where A(x) = Sum_{n=-oo..+oo} Fibonacci(n+1) * x^n * (1-x^n)^n.
RELATED SERIES.
G.f. A(x) = P(x) + Q(x) where
P(x) = 1 + 1*x*(1-x) + 2*x^2*(1-x^2)^2 + 3*x^3*(1-x^3)^3 + 5*x^4*(1-x^4)^4 + 8*x^5*(1-x^5)^5 + 13*x^6*(1-x^6)^6 + 21*x^7*(1-x^7)^7 + 34*x^8*(1-x^8)^8 + 55*x^9*(1-x^9)^9 + 89*x^10*(1-x^10)^10 +...+ Fibonacci(n+1)*x^n*(1-x^n)^n +...
Q(x) = 0*x^0/(1-x) + 1*x^2/(1-x^2)^2 + 1*x^6/(1-x^3)^3 + 2*x^12/(1-x^4)^4 + 3*x^20/(1-x^5)^5 + 5*x^30/(1-x^6)^6 + 8*x^42/(1-x^7)^7 + 13*x^56/(1-x^8)^8 + 21*x^72/(1-x^9)^9 +...+ Fibonacci(n-1)*x^(n^2-n)/(1-x^n)^n +...
Explicitly,
P(x) = 1 + x + x^2 + 3*x^3 + x^4 + 8*x^5 + 6*x^6 + 21*x^7 + 14*x^8 + 64*x^9 + 49*x^10 + 144*x^11 + 182*x^12 + 377*x^13 + 463*x^14 + 1067*x^15 + 1305*x^16 + 2584*x^17 + 3881*x^18 + 6765*x^19 + 9981*x^20 + 18152*x^21 +...
Q(x) = x^2 + 2*x^4 + 4*x^6 + 4*x^8 + 3*x^9 + 5*x^10 + 14*x^12 + 7*x^14 + 10*x^15 + 16*x^16 + 24*x^18 + 33*x^20 + 21*x^21 + 11*x^22 + 80*x^24 + 15*x^25 +...
The reciprocal of the g.f. begins:
1/A(x) = 1 - x - x^2 + 2*x^4 - 4*x^5 + x^6 - 2*x^7 + 19*x^8 - 50*x^9 + 58*x^10 - 42*x^11 + 75*x^12 - 267*x^13 + 566*x^14 - 827*x^15 + 1225*x^16 - 2431*x^17 + 4972*x^18 - 8438*x^19 + 13089*x^20 - 22333*x^21 + 43831*x^22 +...
PROG
(PARI) {a(n) = my(A, P, Q, Ox=x*O(x^n));
P = sum(m=0, n, fibonacci(m+1) * x^m * (1-x^m +Ox)^m);
Q = sum(m=1, sqrtint(2*n+9), fibonacci(m-1) * x^(m^2-m) / (1-x^m +Ox)^m);
A = P + Q; polcoeff(A, n)}
for(n=0, 60, print1(a(n), ", "))
CROSSREFS
Sequence in context: A108381 A238761 A261469 * A108692 A157126 A357655
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 09 2017
STATUS
approved