login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292500
G.f.: exp( Sum_{n>=1} [ Sum_{k>=1} (2*k-1)^n * x^k ]^n / n ).
4
1, 1, 4, 18, 122, 1382, 26992, 967860, 59207134, 6539607238, 1225903048760, 407719392472476, 233686070341415140, 233030334505100451484, 407716349332865096406960, 1219594666823043463552070760, 6484753389847998264537623184230, 58288150472645787928029816422705798, 936721167715228772497787011017302901192, 25340260842241991639562678352357479545874188
OFFSET
0,3
COMMENTS
A060187(n,k) = Sum_{j=1..k} (-1)^(k-j) * binomial(n,k-j) * (2*j-1)^(n-1).
Note that exp( Sum_{n>=1} [ Sum_{k=0..n} A060187(n+1,k+1) * x^k ] / (1-x)^(n+1) * x^n/n ) does not yield an integer series.
Conjecture: a(n)^(1/n^2) tends to 3^(1/4). - Vaclav Kotesovec, Oct 17 2020
LINKS
FORMULA
G.f.: exp( Sum_{n>=1} [ Sum_{k=0..n} A060187(n+1,k+1) * x^k ]^n / (1-x)^(n^2+n) * x^n/n ), where A060187 are the Eulerian numbers of type B.
EXAMPLE
G.f.: A(x) = 1 + x + 4*x^2 + 18*x^3 + 122*x^4 + 1382*x^5 + 26992*x^6 + 967860*x^7 + 59207134*x^8 + 6539607238*x^9 + 1225903048760*x^10 + 407719392472476*x^11 + 233686070341415140*x^12 + 233030334505100451484*x^13 + 407716349332865096406960*x^14 + 1219594666823043463552070760*x^15 +...
RELATED SERIES.
log(A(x)) = x + 7*x^2/2 + 43*x^3/3 + 399*x^4/4 + 6091*x^5/5 + 151255*x^6/6 + 6550307*x^7/7 + 465127199*x^8/8 + 58293976795*x^9/9 + 12191724780647*x^10/10 + 4471204259257363*x^11/11 + 2799295142330495151*x^12/12 + 3026340345288168023883*x^13/13 + 5704756586858875194533367*x^14/14 +...+ A292502(n)*x^n/n +...
The logarithm of g.f. A(x) equals the series:
log(A(x)) = Sum_{n>=1} (x + 3^n*x^2 + 5^n*x^3 +...+ (2*k-1)^n*x^k +...)^n/n,
or,
log(A(x)) = (x + 3*x^2 + 5*x^3 + 7*x^4 + 9*x^5 +...) +
(x + 3^2*x^2 + 5^2*x^3 + 7^2*x^4 + 9^2*x^5 +...)^2/2 +
(x + 3^3*x^2 + 5^3*x^3 + 7^3*x^4 + 9^3*x^5 +...)^3/3 +
(x + 3^4*x^2 + 5^4*x^3 + 7^4*x^4 + 9^4*x^5 +...)^4/4 + ...
This logarithmic series can be written using the Eulerian numbers of type B like so:
log(A(x)) = (x + x^2) / (1-x)^2 +
(x + 6*x^2 + x^3)^2 / (1-x)^6/2 +
(x + 23*x^2 + 23*x^3 + x^4)^3 / (1-x)^12/3 +
(x + 76*x^2 + 230*x^3 + 76*x^4 + x^5)^4 / (1-x)^20/4 +
(x + 237*x^2 + 1682*x^3 + 1682*x^4 + 237*x^5 + x^6)^5 / (1-x)^30/5 +
(x + 722*x^2 + 10543*x^3 + 23548*x^4 + 10543*x^5 + 722*x^6 + x^7)^6 / (1-x)^42/6 +
(x + 2179*x^2 + 60657*x^3 + 259723*x^4 + 259723*x^5 + 60657*x^6 + 2179*x^7 + x^8)^7 / (1-x)^56/7 +...+
[ Sum_{k=0..n} A060187(n+1,k+1) * x^k ]^n / (1-x)^(n^2+n) * x^n/n +...
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Sum[2^(k^2) * x^k * LerchPhi[x, -k, 1/2]^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 17 2020 *)
PROG
(PARI) {a(n) = polcoeff( exp( sum(m=1, n+1, sum(k=1, n+1, (2*k-1)^m * x^k +x*O(x^n))^m/m ) ), n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {A060187(n, k) = sum(j=1, k, (-1)^(k-j) * binomial(n, k-j) * (2*j-1)^(n-1))}
{a(n) = my(A=1, Oxn=x*O(x^n));
A = exp( sum(m=1, n+1, sum(k=0, m, A060187(m+1, k+1)*x^k)^m /(1-x +Oxn)^(m^2+m) * x^m/m ) );
polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 17 2017
STATUS
approved