login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156171
G.f.: A(x) = exp( Sum_{n>=1} x^n/(1 - 2^n*x)^n / n ), a power series in x with integer coefficients.
4
1, 1, 3, 11, 53, 357, 3521, 51665, 1122135, 35638903, 1639453459, 108526044099, 10298220348807, 1396920580458279, 270394562069007327, 74574294532698008703, 29276455806256470979269, 16344863466384180848085765, 12969208162308705691408055345, 14616452655308018025267503353697
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * 2^(n^2/4 + n + 1/2) / (sqrt(Pi) * n^(3/2)), where c = EllipticTheta[3, 0, 1/2] = JacobiTheta3(0,1/2) = 2.1289368272118771586694585... if n is even and c = EllipticTheta[2, 0, 1/2] = JacobiTheta2(0,1/2) = 2.1289312505130275585916134... if n is odd. - Vaclav Kotesovec, Oct 17 2020
EXAMPLE
G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 357*x^5 + 3521*x^6 + 51665*x^7 + 1122135*x^8 + 35638903*x^9 + 1639453459*x^10 + 108526044099*x^11 +...
such that:
log(A(x)) = Sum_{n>=1} x^n/n * (1 + 2^n*x + 4^n*x^2 +...+ 2^(n*k)*x^k +...)^n
or
log(A(x)) = x*(1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +...) +
x^2/2*(1 + 8*x + 48*x^2 + 256*x^3 + 1280*x^4 + 6144*x^5 +...) +
x^3/3*(1 + 24*x + 384*x^2 + 5120*x^3 + 61440*x^4 + 688128*x^5 +...) +
x^4/4*(1 + 64*x + 2560*x^2 + 81920*x^3 + 2293760*x^4 + 58720256*x^5 +...) +
x^5/5*(1 + 160*x + 15360*x^2 + 1146880*x^3 + 73400320*x^4 + 4227858432*x^5 +...) +
x^6/6*(1 + 384*x + 86016*x^2 + 14680064*x^3 + 2113929216*x^4 + 270582939648*x^5 +...) +...
Explicitly,
log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 161*x^4/4 + 1441*x^5/5 + 18305*x^6/6 + 330625*x^7/7 + 8488961*x^8/8 + 309465601*x^9/9 + 16011372545*x^10/10 + 1174870185985*x^11/11 + 122233833963521*x^12/12 +...
MATHEMATICA
nmax = 20; CoefficientList[Series[Exp[Sum[x^k/(1 - 2^k*x)^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* Vaclav Kotesovec, Oct 17 2020 *)
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n, x^m/(1-2^m*x+x*O(x^n))^m/m)), n)}
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 05 2009
STATUS
approved