login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: A(x) = exp( Sum_{n>=1} x^n/(1 - 2^n*x)^n / n ), a power series in x with integer coefficients.
4

%I #9 Oct 17 2020 08:25:21

%S 1,1,3,11,53,357,3521,51665,1122135,35638903,1639453459,108526044099,

%T 10298220348807,1396920580458279,270394562069007327,

%U 74574294532698008703,29276455806256470979269,16344863466384180848085765,12969208162308705691408055345,14616452655308018025267503353697

%N G.f.: A(x) = exp( Sum_{n>=1} x^n/(1 - 2^n*x)^n / n ), a power series in x with integer coefficients.

%H Paul D. Hanna, <a href="/A156171/b156171.txt">Table of n, a(n) for n = 0..150</a>

%F a(n) ~ c * 2^(n^2/4 + n + 1/2) / (sqrt(Pi) * n^(3/2)), where c = EllipticTheta[3, 0, 1/2] = JacobiTheta3(0,1/2) = 2.1289368272118771586694585... if n is even and c = EllipticTheta[2, 0, 1/2] = JacobiTheta2(0,1/2) = 2.1289312505130275585916134... if n is odd. - _Vaclav Kotesovec_, Oct 17 2020

%e G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 53*x^4 + 357*x^5 + 3521*x^6 + 51665*x^7 + 1122135*x^8 + 35638903*x^9 + 1639453459*x^10 + 108526044099*x^11 +...

%e such that:

%e log(A(x)) = Sum_{n>=1} x^n/n * (1 + 2^n*x + 4^n*x^2 +...+ 2^(n*k)*x^k +...)^n

%e or

%e log(A(x)) = x*(1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 32*x^5 +...) +

%e x^2/2*(1 + 8*x + 48*x^2 + 256*x^3 + 1280*x^4 + 6144*x^5 +...) +

%e x^3/3*(1 + 24*x + 384*x^2 + 5120*x^3 + 61440*x^4 + 688128*x^5 +...) +

%e x^4/4*(1 + 64*x + 2560*x^2 + 81920*x^3 + 2293760*x^4 + 58720256*x^5 +...) +

%e x^5/5*(1 + 160*x + 15360*x^2 + 1146880*x^3 + 73400320*x^4 + 4227858432*x^5 +...) +

%e x^6/6*(1 + 384*x + 86016*x^2 + 14680064*x^3 + 2113929216*x^4 + 270582939648*x^5 +...) +...

%e Explicitly,

%e log(A(x)) = x + 5*x^2/2 + 25*x^3/3 + 161*x^4/4 + 1441*x^5/5 + 18305*x^6/6 + 330625*x^7/7 + 8488961*x^8/8 + 309465601*x^9/9 + 16011372545*x^10/10 + 1174870185985*x^11/11 + 122233833963521*x^12/12 +...

%t nmax = 20; CoefficientList[Series[Exp[Sum[x^k/(1 - 2^k*x)^k/k, {k, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 17 2020 *)

%o (PARI) {a(n)=polcoeff(exp(sum(m=1,n,x^m/(1-2^m*x+x*O(x^n))^m/m)),n)}

%Y Cf. A156170, A155200, A156100.

%K nonn

%O 0,3

%A _Paul D. Hanna_, Feb 05 2009