login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: Sum_{n=-oo..+oo} Fibonacci(n+1) * x^n * (1-x^n)^n.
1

%I #19 Oct 10 2017 07:14:57

%S 1,1,2,3,3,8,10,21,18,67,54,144,196,377,470,1077,1321,2584,3905,6765,

%T 10014,18173,27084,46368,73001,121448,191530,319827,505038,832040,

%U 1335766,2178309,3497250,5710862,9183554,14931192,24093521,39088169,63117470,102363639,165353391,267914296,433177813,701408733,1134249308,1836422951,2970148632

%N G.f.: Sum_{n=-oo..+oo} Fibonacci(n+1) * x^n * (1-x^n)^n.

%C Compare g.f. to: Sum_{n=-oo..+oo} x^n * (1 - x^n)^n = 0.

%H Paul D. Hanna, <a href="/A292498/b292498.txt">Table of n, a(n) for n = 0..1030</a>

%F G.f. P(x) + Q(x) where

%F P(x) = Sum_{n>=0} Fibonacci(n+1) * x^n * (1-x^n)^n,

%F Q(x) = Sum_{n>=1} Fibonacci(n-1) * x^(n^2-n) / (1-x^n)^n.

%F a(n) ~ phi^(n+1) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Oct 10 2017

%e G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 3*x^4 + 8*x^5 + 10*x^6 + 21*x^7 + 18*x^8 + 67*x^9 + 54*x^10 + 144*x^11 + 196*x^12 + 377*x^13 + 470*x^14 + 1077*x^15 + 1321*x^16 + 2584*x^17 + 3905*x^18 + 6765*x^19 + 10014*x^20 +...

%e where A(x) = Sum_{n=-oo..+oo} Fibonacci(n+1) * x^n * (1-x^n)^n.

%e RELATED SERIES.

%e G.f. A(x) = P(x) + Q(x) where

%e P(x) = 1 + 1*x*(1-x) + 2*x^2*(1-x^2)^2 + 3*x^3*(1-x^3)^3 + 5*x^4*(1-x^4)^4 + 8*x^5*(1-x^5)^5 + 13*x^6*(1-x^6)^6 + 21*x^7*(1-x^7)^7 + 34*x^8*(1-x^8)^8 + 55*x^9*(1-x^9)^9 + 89*x^10*(1-x^10)^10 +...+ Fibonacci(n+1)*x^n*(1-x^n)^n +...

%e Q(x) = 0*x^0/(1-x) + 1*x^2/(1-x^2)^2 + 1*x^6/(1-x^3)^3 + 2*x^12/(1-x^4)^4 + 3*x^20/(1-x^5)^5 + 5*x^30/(1-x^6)^6 + 8*x^42/(1-x^7)^7 + 13*x^56/(1-x^8)^8 + 21*x^72/(1-x^9)^9 +...+ Fibonacci(n-1)*x^(n^2-n)/(1-x^n)^n +...

%e Explicitly,

%e P(x) = 1 + x + x^2 + 3*x^3 + x^4 + 8*x^5 + 6*x^6 + 21*x^7 + 14*x^8 + 64*x^9 + 49*x^10 + 144*x^11 + 182*x^12 + 377*x^13 + 463*x^14 + 1067*x^15 + 1305*x^16 + 2584*x^17 + 3881*x^18 + 6765*x^19 + 9981*x^20 + 18152*x^21 +...

%e Q(x) = x^2 + 2*x^4 + 4*x^6 + 4*x^8 + 3*x^9 + 5*x^10 + 14*x^12 + 7*x^14 + 10*x^15 + 16*x^16 + 24*x^18 + 33*x^20 + 21*x^21 + 11*x^22 + 80*x^24 + 15*x^25 +...

%e The reciprocal of the g.f. begins:

%e 1/A(x) = 1 - x - x^2 + 2*x^4 - 4*x^5 + x^6 - 2*x^7 + 19*x^8 - 50*x^9 + 58*x^10 - 42*x^11 + 75*x^12 - 267*x^13 + 566*x^14 - 827*x^15 + 1225*x^16 - 2431*x^17 + 4972*x^18 - 8438*x^19 + 13089*x^20 - 22333*x^21 + 43831*x^22 +...

%o (PARI) {a(n) = my(A,P,Q,Ox=x*O(x^n));

%o P = sum(m=0,n, fibonacci(m+1) * x^m * (1-x^m +Ox)^m);

%o Q = sum(m=1,sqrtint(2*n+9), fibonacci(m-1) * x^(m^2-m) / (1-x^m +Ox)^m);

%o A = P + Q; polcoeff(A,n)}

%o for(n=0,60,print1(a(n),", "))

%K nonn

%O 0,3

%A _Paul D. Hanna_, Oct 09 2017