login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292492
p-INVERT of the odd positive integers, where p(S) = 1 - S + S^2 - S^3.
1
1, 3, 5, 8, 22, 100, 444, 1680, 5496, 16096, 43936, 117360, 323056, 946288, 2930320, 9287792, 29222800, 89856944, 269619792, 795460592, 2334102160, 6882700336, 20508738256, 61728245104, 186833742864, 565643533232, 1706639551568, 5125652284144, 15338915301264
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.
FORMULA
G.f.: -(((1 + x) (1 - 5 x + 8 x^2 - x^3 + x^4))/((-1 + 3 x) (1 - 4 x + 7 x^2 - 2 x^3 + 2 x^4))).
a(n) = 7*a(n-1) - 19*a(n-2) + 23*a(n-3) - 8*a(n-4) + 6*a(n-5) for n >= 7.
MATHEMATICA
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s + s^2 - s^3;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292492 *)
PROG
(PARI) x='x+O('x^99); Vec(((1+x)*(1-5*x+8*x^2-x^3+x^4))/((1-3*x)*(1-4*x+7*x^2-2*x^3+2*x^4))) \\ Altug Alkan, Oct 03 2017
CROSSREFS
Sequence in context: A075192 A361089 A101984 * A108460 A249951 A368740
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 03 2017
STATUS
approved