login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A368740
a(n) = Sum_{k = 1..n} gcd(5*k, n).
0
1, 3, 5, 8, 25, 15, 13, 20, 21, 75, 21, 40, 25, 39, 125, 48, 33, 63, 37, 200, 65, 63, 45, 100, 225, 75, 81, 104, 57, 375, 61, 112, 105, 99, 325, 168, 73, 111, 125, 500, 81, 195, 85, 168, 525, 135, 93, 240, 133, 675, 165, 200, 105, 243, 525, 260, 185, 171, 117, 1000, 121, 183, 273, 256, 625
OFFSET
1,2
COMMENTS
a(n) equals the number of solutions to the congruence 5*x*y == 0 (mod n) for 1 <= x, y <= n.
FORMULA
a(5*n) = 25*A018804(n); a(5*n+r) = A018804(5*n+r) for 1 <= r <= 4.
a(n) = Sum_{d divides n} gcd(5, d)*phi(d)*n/d, where phi(n) = A000010(n).
Multiplicative: a(5^k) = (4*k + 1)*5^k and for prime p not equal to 5, a(p^k) = (k + 1)*p^k - k*p^(k-1).
Define D(n) = Sum_{d divides n} a(d). Then
D(5*n+r) = (5*n + r)*tau(5*n+r) for 1 <= r <= 4, where tau(n) = A000005(n), the number of divisors of n.
The sequence {(1/25)*( D(5*n) - D(n) ) : n >= 1} begins {1, 4, 6, 12, 9, 24, 14, 32, 27, 36, 22, 72, 26, 56, 54, 80, 34, 108, 38, 108, 84, 88, ...} and appears to be multiplicative.
Dirichlet g.f.: (1 + 15/5^s)/(1 - 1/5^s) * zeta(s-1)^2/zeta(s).
Sum_{k=1..n} a(k) ~ n^2 * (5*log(n) - 5/2 + 10*gamma - 25*log(5)/12 - 30*zeta'(2)/Pi^2) / Pi^2, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jan 12 2024
EXAMPLE
a(10) = 75: each of the 100 pairs (x, y), 1 <= x, y <= 10, is a solution to the congruence 5*x*y == 0 (mod 10) except for the 25 pairs (x, y) with both x and y odd.
MAPLE
seq(add(gcd(5*k, n), k = 1..n), n = 1..70);
# alternative faster program for large n
with(numtheory): seq(add(gcd(5, d)*phi(d)*n/d, d in divisors(n)), n = 1..70);
MATHEMATICA
Table[Sum[GCD[5*k, n], {k, 1, n}], {n, 1, 100}] (* Vaclav Kotesovec, Jan 12 2024 *)
CROSSREFS
KEYWORD
nonn,mult,easy
AUTHOR
Peter Bala, Jan 07 2024
STATUS
approved