The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A292489 p-INVERT of the odd positive integers, where p(S) = 1 - S - 6 S^2. 1
1, 10, 60, 312, 1656, 8928, 48024, 257904, 1385352, 7442784, 39985272, 214811280, 1154025000, 6199749504, 33306803352, 178933509936, 961281138888, 5164272731808, 27743925989304, 149048175357648, 800728728609384, 4301739993919680, 23110157427289560 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453).
See A292480 for a guide to related sequences.
LINKS
FORMULA
G.f.: -(((1 + x) (1 + 4 x + 7 x^2))/((-1 + 5 x + 2 x^2) (1 + 3 x^2))).
a(n) = 5*a(n-1) - a(n-2) + 16*a(n-3) + 6*a(n-4) for n >= 5.
MATHEMATICA
z = 60; s = x (x + 1)/(1 - x)^2; p = 1 - s - 6 s^2;
Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A005408 *)
Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A292489 *)
PROG
(PARI) x='x+O('x^99); Vec(((1+x)*(1+4*x+7*x^2))/((1-5*x-2*x^2)*(1+3*x^2))) \\ Altug Alkan, Oct 03 2017
CROSSREFS
Sequence in context: A003472 A112502 A293081 * A083585 A250575 A155633
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 03 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 28 16:19 EDT 2024. Contains 372916 sequences. (Running on oeis4.)