login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A292372
A binary encoding of 2-digits in base-4 representation of n.
6
0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 3, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 3, 2, 0, 0, 1, 0, 4, 4, 5, 4, 4, 4, 5, 4, 6, 6, 7, 6, 4, 4, 5, 4, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 3, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 3, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 2, 2, 3, 2, 0, 0, 1, 0, 4, 4, 5, 4, 4, 4, 5, 4, 6, 6, 7, 6, 4, 4, 5, 4, 0, 0, 1, 0, 0, 0, 1, 0, 2
OFFSET
0,9
FORMULA
a(n) = A059906(n AND A048724(n)), where AND is a bitwise-AND (A004198).
For all n >= 0, A000120(a(n)) = A160382(n).
EXAMPLE
n a(n) base-4(n) binary(a(n))
A007090(n) A007088(a(n))
-- ---- ---------- ------------
1 0 1 0
2 1 2 1
3 0 3 0
4 0 10 0
5 0 11 0
6 1 12 1
7 0 13 0
8 2 20 10
9 2 21 10
10 3 22 11
11 2 23 10
12 0 30 0
13 0 31 0
14 1 32 1
15 0 33 0
16 0 100 0
17 0 101 0
18 1 102 1
MATHEMATICA
Table[FromDigits[IntegerDigits[n, 4] /. k_ /; IntegerQ@ k :> If[k == 2, 1, 0], 2], {n, 0, 120}] (* Michael De Vlieger, Sep 21 2017 *)
PROG
(Scheme, with memoization-macro definec)
(definec (A292372 n) (if (zero? n) n (let ((d (modulo n 4))) (+ (if (= 2 d) 1 0) (* 2 (A292372 (/ (- n d) 4)))))))
(Python)
from sympy.ntheory.factor_ import digits
def a(n):
k=digits(n, 4)[1:]
return 0 if n==0 else int("".join('1' if i==2 else '0' for i in k), 2)
print([a(n) for n in range(121)]) # Indranil Ghosh, Sep 21 2017
(Python)
def A292372(n): return 0 if (m:=n&~(n<<1)) < 2 else int(bin(m)[-2:1:-2][::-1], 2) # Chai Wah Wu, Jun 30 2022
CROSSREFS
Cf. A289814 (analogous sequence for base-3).
Sequence in context: A022461 A306821 A271226 * A098008 A234808 A248079
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Sep 15 2017
STATUS
approved