login
A292181
E.g.f. A(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that A'(x) = A(x) + B(x)*C(x).
3
1, 3, 10, 45, 259, 1806, 14827, 140367, 1504576, 17972559, 236275711, 3387012720, 52572376669, 878552787927, 15729439074058, 300400031036745, 6095885898471775, 130982551821899862, 2970844882925223487, 70929401617621416243, 1778125633605205346584, 46698342082602696345555, 1282168260097348871508667, 36734284970419645262875200, 1096293296048734274708523433, 34026339905854090378353208155
OFFSET
1,2
COMMENTS
Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively.
Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x).
LINKS
FORMULA
E.g.f. A(x) and related functions B(x) and C(x) satisfy:
(1a) A(x)^2 + B(x)^2 = C(x)^2.
(1b) B(x)^2 - A(x)^2 = exp(x)^2.
(1c) C(x)^2 - 2*A(x)^2 = exp(x)^2.
(2a) A(x) = Integral A(x) + B(x)*C(x) dx.
(2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
(2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
(3a) A(x) = exp(x) * sinh( Integral C(x) dx ).
(3b) B(x) = exp(x) * cosh( Integral C(x) dx ).
(3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx).
(3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2).
(4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ).
(4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ).
(4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ).
(5a) B(x) + i*A(x) = C(x) * exp( i*atan( A(x)/B(x) ) ).
(5b) A(x)/B(x) = Series_Reversion( Integral 1/( sqrt(1-x^4) * (1 + Integral 1/sqrt(1-x^4) dx) ) dx ).
Limit A292182(n)/A292181(n) = 1.
Limit A292183(n)/A292181(n) = sqrt(2).
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +...
where A(x) = Integral A(x) + B(x)*C(x) dx.
RELATED SERIES.
B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +...
where B(x) = 1 + Integral B(x) + A(x)*C(x) dx.
C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +...
where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx.
Squares of series.
A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +...
where A(x)^2 + B(x)^2 = C(x)^2.
B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +...
where B(x)^2 - A(x)^2 = exp(2*x).
C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +...
where C(x)^2 - 2*A(x)^2 = exp(2*x).
PROG
(PARI) {a(n) = my(A=x, B=1, C=1); for(i=0, n, A = intformal(A + B*C + x*O(x^n));
B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(A, n)}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Cf. A292182 (B), A292183 (C).
Sequence in context: A077002 A268224 A003704 * A236409 A348468 A000250
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Sep 10 2017
STATUS
approved