The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A292181 E.g.f. A(x) satisfies: A(x)^2 + B(x)^2 = C(x)^2, such that A'(x) = A(x) + B(x)*C(x). 3
 1, 3, 10, 45, 259, 1806, 14827, 140367, 1504576, 17972559, 236275711, 3387012720, 52572376669, 878552787927, 15729439074058, 300400031036745, 6095885898471775, 130982551821899862, 2970844882925223487, 70929401617621416243, 1778125633605205346584, 46698342082602696345555, 1282168260097348871508667, 36734284970419645262875200, 1096293296048734274708523433, 34026339905854090378353208155 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Here, the functions A(x), B(x), and C(x) are the e.g.f.s of sequences A292181, A292182, and A292183, respectively. Another Pythagorean triple is the e.g.f.s of A289695, A193543, and A153302, which are related to the Lemniscate sine and cosine functions, sl(x) and cl(x). LINKS Paul D. Hanna, Table of n, a(n) for n = 1..300 FORMULA E.g.f. A(x) and related functions B(x) and C(x) satisfy: (1a) A(x)^2 + B(x)^2 = C(x)^2. (1b) B(x)^2 - A(x)^2 = exp(x)^2. (1c) C(x)^2 - 2*A(x)^2 = exp(x)^2. (2a) A(x) = Integral A(x) + B(x)*C(x) dx. (2b) B(x) = 1 + Integral B(x) + A(x)*C(x) dx. (2c) C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx. (3a) A(x) = exp(x) * sinh( Integral C(x) dx ). (3b) B(x) = exp(x) * cosh( Integral C(x) dx ). (3c) C(x) = exp(x) * cosh( Integral sqrt(2)*B(x) dx). (3d) A(x) = exp(x) * sinh( Integral sqrt(2)*B(x) dx) / sqrt(2). (4a) A(x) + B(x) = exp(x) * exp( Integral C(x) dx ). (4b) C(x) + sqrt(2)*A(x) = exp(x) * exp( Integral sqrt(2)*B(x) dx ). (4c) C(x) + sqrt(2)*B(x) = (1 + sqrt(2)) * exp(x) * exp( Integral sqrt(2)*A(x) dx ). (5a) B(x) + i*A(x) = C(x) * exp( i*atan( A(x)/B(x) ) ). (5b) A(x)/B(x) = Series_Reversion( Integral 1/( sqrt(1-x^4) * (1 + Integral 1/sqrt(1-x^4) dx) ) dx ). Limit A292182(n)/A292181(n) = 1. Limit A292183(n)/A292181(n) = sqrt(2). EXAMPLE E.g.f.: A(x) = x + 3*x^2/2! + 10*x^3/3! + 45*x^4/4! + 259*x^5/5! + 1806*x^6/6! + 14827*x^7/7! + 140367*x^8/8! + 1504576*x^9/9! + 17972559*x^10/10! + 236275711*x^11/11! + 3387012720*x^12/12! + 52572376669*x^13/13! + 878552787927*x^14/14! + 15729439074058*x^15/15! + 300400031036745*x^16/16! +... where A(x) = Integral A(x) + B(x)*C(x) dx. RELATED SERIES. B(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 35*x^4/4! + 226*x^5/5! + 1715*x^6/6! + 14701*x^7/7! + 141248*x^8/8! + 1515661*x^9/9! + 18048527*x^10/10! + 236581984*x^11/11! + 3386091821*x^12/12! + 52533799501*x^13/13! + 877993866290*x^14/14! + 15723411375931*x^15/15! + 300349139257727*x^16/16 +... where B(x) = 1 + Integral B(x) + A(x)*C(x) dx. C(x) = 1 + x + 3*x^2/2! + 13*x^3/3! + 63*x^4/4! + 361*x^5/5! + 2499*x^6/6! + 20581*x^7/7! + 196311*x^8/8! + 2116561*x^9/9! + 25357563*x^10/10! + 333765037*x^11/11! + 4787007855*x^12/12! + 74323701817*x^13/13! + 1242253733619*x^14/14! + 22243082373301*x^15/15! + 424815246293319*x^16/16! +... where C(x) = 1 + Integral C(x) + 2*A(x)*B(x) dx. Squares of series. A(x)^2 = 2*x^2/2! + 18*x^3/3! + 134*x^4/4! + 1050*x^5/5! + 9158*x^6/6! + 89418*x^7/7! + 972470*x^8/8! + 11700378*x^9/9! + 154613222*x^10/10! + 2227684074*x^11/11! + 34757852054*x^12/12! + 583740365754*x^13/13! + 10497898450118*x^14/14! + 201267889853706*x^15/15! + 4097952119101814*x^16/16! +... where A(x)^2 + B(x)^2 = C(x)^2. B(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 150*x^4/4! + 1082*x^5/5! + 9222*x^6/6! + 89546*x^7/7! + 972726*x^8/8! + 11700890*x^9/9! + 154614246*x^10/10! + 2227686122*x^11/11! + 34757856150*x^12/12! + 583740373946*x^13/13! + 10497898466502*x^14/14! + 201267889886474*x^15/15! + 4097952119167350*x^16/16! +... where B(x)^2 - A(x)^2 = exp(2*x). C(x)^2 = 1 + 2*x + 8*x^2/2! + 44*x^3/3! + 284*x^4/4! + 2132*x^5/5! + 18380*x^6/6! + 178964*x^7/7! + 1945196*x^8/8! + 23401268*x^9/9! + 309227468*x^10/10! + 4455370196*x^11/11! + 69515708204*x^12/12! + 1167480739700*x^13/13! + 20995796916620*x^14/14! + 402535779740180*x^15/15! + 8195904238269164*x^16/16! +... where C(x)^2 - 2*A(x)^2 = exp(2*x). PROG (PARI) {a(n) = my(A=x, B=1, C=1); for(i=0, n, A = intformal(A + B*C + x*O(x^n)); B = 1 + intformal(B + A*C); C = 1 + intformal(C + 2*A*B)); n!*polcoeff(A, n)} for(n=1, 30, print1(a(n), ", ")) CROSSREFS Cf. A292182 (B), A292183 (C). Sequence in context: A077002 A268224 A003704 * A236409 A000250 A118601 Adjacent sequences:  A292178 A292179 A292180 * A292182 A292183 A292184 KEYWORD nonn AUTHOR Paul D. Hanna, Sep 10 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 10 03:11 EDT 2021. Contains 343747 sequences. (Running on oeis4.)