login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291844
Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
9
1, 1, 4, 2, 29, 23, 274, 292, 36, 3145, 4068, 994, 16, 42294, 62861, 22250, 1512, 651227, 1075562, 484840, 61027, 1060, 11295242, 20275944, 10867381, 1977879, 93188, 280, 217954807, 418724047, 255929070, 59896915, 4823178, 80632, 4632600152, 9418874022, 6387031115, 1798212190, 204846125, 7410676, 37056, 107572674851, 229535650138, 169414005231, 55017177704, 8022471066, 463514918, 7255380, 7040
OFFSET
0,3
COMMENTS
Row n>0 contains floor((2*n+2)/3) terms.
LINKS
Gheorghe Coserea, Rows n = 0..124, flattened
Luca G. Molinari, Nicola Manini, Enumeration of many-body skeleton diagrams, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
FORMULA
y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0.
A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0).
EXAMPLE
A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[0] 1;
[1] 1;
[2] 4, 2;
[3] 29, 23;
[4] 274, 292, 36;
[5] 3145, 4068, 994, 16;
[6] 42294, 62861, 22250, 1512;
[7] 651227, 1075562, 484840, 61027, 1060;
[8] 11295242, 20275944, 10867381, 1977879, 93188, 280;
[9] 217954807, 418724047, 255929070, 59896915, 4823178, 80632;
[10] ...
MATHEMATICA
m = maxExponent = 13; Z[_] = 0;
Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* Jean-François Alcover, Nov 17 2018 *)
PROG
(PARI)
A291843_ser(N, t='t) = {
my(x='x+O('x^N), y=1, y1=0, n=1,
dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
while (n++,
y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
(t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
if (y1 == y, break); y = y1; ); y;
};
A291844_ser(N, t='t) = {
my(z = A291843_ser(N+1, t));
((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
};
concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))
CROSSREFS
Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5).
Sequence in context: A200032 A121667 A368767 * A353750 A093991 A030447
KEYWORD
nonn,tabf
AUTHOR
Gheorghe Coserea, Oct 24 2017
STATUS
approved