Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #28 Nov 17 2018 15:12:28
%S 1,1,4,2,29,23,274,292,36,3145,4068,994,16,42294,62861,22250,1512,
%T 651227,1075562,484840,61027,1060,11295242,20275944,10867381,1977879,
%U 93188,280,217954807,418724047,255929070,59896915,4823178,80632,4632600152,9418874022,6387031115,1798212190,204846125,7410676,37056,107572674851,229535650138,169414005231,55017177704,8022471066,463514918,7255380,7040
%N Triangle T(n,k) read by rows: coefficients of polynomials P_n(t) defined in Formula section.
%C Row n>0 contains floor((2*n+2)/3) terms.
%H Gheorghe Coserea, <a href="/A291844/b291844.txt">Rows n = 0..124, flattened</a>
%H Luca G. Molinari, Nicola Manini, <a href="https://arxiv.org/abs/cond-mat/0512342">Enumeration of many-body skeleton diagrams</a>, arXiv:cond-mat/0512342 [cond-mat.str-el], 2006.
%F y(x;t) = Sum_{n>=0} P_n(t)*x^n satisfies y = ((1+x)*z - 1) * (1 + t*x)/((1-t + t*(1+x)*z)*x*z^2), where z = A291843(x;t) and P_n(t) = Sum_{k=0..floor((2*n-1)/3)} T(n,k)*t^k for n > 0.
%F A294158(n) = P_n(1), A294159(n)=P_n(-1), A294160(n)=P_n(0).
%e A(x;t) = 1 + x + (4 + 2*t)*x^2 + (29 + 23*t)*x^3 + (274 + 292*t + 36*t^2)*x^4 + ...
%e Triangle starts:
%e n\k [0] [1] [2] [3] [4] [5]
%e [0] 1;
%e [1] 1;
%e [2] 4, 2;
%e [3] 29, 23;
%e [4] 274, 292, 36;
%e [5] 3145, 4068, 994, 16;
%e [6] 42294, 62861, 22250, 1512;
%e [7] 651227, 1075562, 484840, 61027, 1060;
%e [8] 11295242, 20275944, 10867381, 1977879, 93188, 280;
%e [9] 217954807, 418724047, 255929070, 59896915, 4823178, 80632;
%e [10] ...
%t m = maxExponent = 13; Z[_] = 0;
%t Do[Z[t_] = -(((1 - l + l (1+t) Z[t]) (-((t Z[t])/(1 + l t)) - (1 - t - 2 l t^2)/(1 - l + l (1+t) Z[t]) - 2 t^2 Z'[t]))/((1+t) (1 - t - 2 l t^2))) + O[t]^m // Normal // Simplify, {m}];
%t gamma[t_] = ((1 + l t)(-1 + Z[t] + t Z[t]))/(Z[t]^2 (t + l t (-1 + Z[t] + t Z[t]))) + O[t]^m // Normal // Simplify;
%t CoefficientList[# + O[l]^m, l]& /@ Most @ CoefficientList[gamma[t], t] // Flatten (* _Jean-François Alcover_, Nov 17 2018 *)
%o (PARI)
%o A291843_ser(N, t='t) = {
%o my(x='x+O('x^N), y=1, y1=0, n=1,
%o dn = 1/(-2*t^2*x^4 - (2*t^2+3*t)*x^3 - (2*t+1)*x^2 + (2*t-1)*x + 1));
%o while (n++,
%o y1 = (2*x^2*y'*((-t^2 + t)*x + (-t + 1) + (t^2*x^2 + (t^2 + t)*x + t)*y) +
%o (t*x^2 + t*x)*y^2 - (2*t^2*x^3 + 3*t*x^2 + (-t + 1)*x - 1))*dn;
%o if (y1 == y, break); y = y1;); y;
%o };
%o A291844_ser(N, t='t) = {
%o my(z = A291843_ser(N+1,t));
%o ((1+x)*z - 1)*(1 + t*x)/((1-t + t*(1+x)*z)*x*z^2);
%o };
%o concat(apply(p->Vecrev(p), Vec(A291844_ser(12))))
%Y Cf. A286795, A286798, A286800, A291843.
%Y Columns k=0..5 give A294160 (k=0), A294161 (k=1), A294162 (k=2), A294163 (k=3), A294164 (k=4), A294165 (k=5).
%K nonn,tabf
%O 0,3
%A _Gheorghe Coserea_, Oct 24 2017